The mitigation of global warming effect requires intensified research efforts to reduce greenhouse gas emissions. This study was aimed at investigating the valorization of two principal greenhouse gases, namely carbon dioxide (CO2) and methane (CH4), over CeO2-doped Co–Ni/GO catalytic materials. The CeO2-doped Co–Ni/GO catalysts were synthesized using a sequential wet impregnation method and employed for CO2 reforming of CH4. The catalytic materials were characterized using various instrumental techniques. Response surface methodology (RSM) was employed to investigate the impact of process factors, namely reaction temperature (ranging from 700 to 800 °C), CeO2 loading (ranging from 5% to 15%) and feed flowrate (ranging from 10n to 50 mL min−1), on the CH4 conversions.
Results
The three factors were observed to have significant influence on the CH4 conversion based on analysis of variance. The analysis of the RSM quadratic model revealed that the optimum conditions of 800 °C, 14.22% and 10.00 mL min−1 were obtained for the reaction temperature, CeO2 loading and feed flowrate resulting in maximum CH4 conversion of 98.24%. The desirability function for these results was calculated to be 0.934. The predicted process parameters aligned with the results of the actual experimental analysis.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.