Piezoelectric catalysis using perovskite-type barium titanate (BaTiO3) has been applied to the decomposition of refractory organic pollutants through piezoelectric catalytic persulfate (PS). Nevertheless, challenges such as a limited specific surface area, poor electrical conductivity and a tendency towards agglomeration in BaTiO3 necessitate the exploration of novel methods to enhance its piezoelectric efficiency.
RESULTS
Sludge carbon (SC) from sewage treatment and BaTiO3 was utilized to develop a novel piezoelectric catalytic material (BaTiO3/SC). The specific surface area of BaTiO3/SC reached 67.92 m2 g−1, which is nine times larger than that of BaTiO3 alone. The inclusion of SC in the composite enhanced the number of active sites and contributed to a higher degree of graphitization, improved electrical conductivity, and provided a more stable structure for BaTiO3/SC. This material was capable of harvesting mechanical vibration energy from ultrasound, thereby generating piezoelectric catalytic properties and activating PS to achieve a 93% decomposition ratio of enrofloxacin (ENR) in water within 80 min. The activation of PS by BaTiO3/SC piezocatalysis led to the production of reactive oxygen species (ROS), such as •OH and SO4−•. These ROS attack the quinolone ring of ENR, which is susceptible to cleavage, resulting in the decomposition of ENR into intermediates of lower toxicity.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.