Harry J. Whitlow, Gyula Nagy, Andrej Kuznetsov, Robert J.W. Frost, Alexander Azarov, Karen M. Smith, Sumittra Amphalop, Wimonrut Insuan, Sakulchit Wichianchot, Min‐Quin Ren, Thomas Osipowicz, Chris G. Ryan, Wanwisa Sudprasert, Francois Villinger
{"title":"Major and Trace Element Composition Differences Revealed in Porcine Intestine by Dynamic Analysis and MeV Ion Microscopy","authors":"Harry J. Whitlow, Gyula Nagy, Andrej Kuznetsov, Robert J.W. Frost, Alexander Azarov, Karen M. Smith, Sumittra Amphalop, Wimonrut Insuan, Sakulchit Wichianchot, Min‐Quin Ren, Thomas Osipowicz, Chris G. Ryan, Wanwisa Sudprasert, Francois Villinger","doi":"10.1002/pssa.202400161","DOIUrl":null,"url":null,"abstract":"Physiologically relevant concentrations in biological tissue, in the in vivo, state are of the order of μmol L<jats:sup>−1</jats:sup> and mmol L<jats:sup>−1</jats:sup>. Up to the present, mapping the major elements in the matrix and its thickness has been neglected, despite their importance for quantification of lesser and trace element concentrations. Ryan and Jamieson's dynamic analysis, statistical spectral decomposition approach, is developed to quantitatively measure ex vivo tissue sections cut using a cryomicrotome. This mitigates the problem that physical analysis methods require a vacuum environment. This approach is used to quantitatively image the major matrix elements H, C, N, and O as well as trace maps of Ca, Fe, and Zn in a tissue section of porcine intestine. This sample is selected as it exhibits a complex morphology with multiple tissue compartments (such as muscle and mucosa, as well as void areas from blood vessels, lymph ducts, sinuses crypts, and villi. In the results, it is demonstrated that different tissue types can have a different matrix composition and thickness. Using this information, quantitative maps and elemental molarities for the lesser and trace elements Ca, Fe, and Zn are obtained.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400161","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Physiologically relevant concentrations in biological tissue, in the in vivo, state are of the order of μmol L−1 and mmol L−1. Up to the present, mapping the major elements in the matrix and its thickness has been neglected, despite their importance for quantification of lesser and trace element concentrations. Ryan and Jamieson's dynamic analysis, statistical spectral decomposition approach, is developed to quantitatively measure ex vivo tissue sections cut using a cryomicrotome. This mitigates the problem that physical analysis methods require a vacuum environment. This approach is used to quantitatively image the major matrix elements H, C, N, and O as well as trace maps of Ca, Fe, and Zn in a tissue section of porcine intestine. This sample is selected as it exhibits a complex morphology with multiple tissue compartments (such as muscle and mucosa, as well as void areas from blood vessels, lymph ducts, sinuses crypts, and villi. In the results, it is demonstrated that different tissue types can have a different matrix composition and thickness. Using this information, quantitative maps and elemental molarities for the lesser and trace elements Ca, Fe, and Zn are obtained.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.