Hitting the mark: Optimising Marked Power Spectra for Cosmology

Jessica A. Cowell, David Alonso, Jia Liu
{"title":"Hitting the mark: Optimising Marked Power Spectra for Cosmology","authors":"Jessica A. Cowell, David Alonso, Jia Liu","doi":"arxiv-2409.05695","DOIUrl":null,"url":null,"abstract":"Marked power spectra provide a computationally efficient way to extract\nnon-Gaussian information from the matter density field using the usual analysis\ntools developed for the power spectrum without the need for explicit\ncalculation of higher-order correlators. In this work, we explore the optimal\nform of the mark function used for re-weighting the density field, to maximally\nconstrain cosmology. We show that adding to the mark function or multiplying it\nby a constant leads to no additional information gain, which significantly\nreduces our search space for optimal marks. We quantify the information gain of\nthis optimal function and compare it against mark functions previously proposed\nin the literature. We find that we can gain around $\\sim2$ times smaller errors\nin $\\sigma_8$ and $\\sim4$ times smaller errors in $\\Omega_m$ compared to using\nthe traditional power spectrum alone, an improvement of $\\sim60\\%$ compared to\nother proposed marks when applied to the same dataset.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Marked power spectra provide a computationally efficient way to extract non-Gaussian information from the matter density field using the usual analysis tools developed for the power spectrum without the need for explicit calculation of higher-order correlators. In this work, we explore the optimal form of the mark function used for re-weighting the density field, to maximally constrain cosmology. We show that adding to the mark function or multiplying it by a constant leads to no additional information gain, which significantly reduces our search space for optimal marks. We quantify the information gain of this optimal function and compare it against mark functions previously proposed in the literature. We find that we can gain around $\sim2$ times smaller errors in $\sigma_8$ and $\sim4$ times smaller errors in $\Omega_m$ compared to using the traditional power spectrum alone, an improvement of $\sim60\%$ compared to other proposed marks when applied to the same dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
击中目标为宇宙学优化标记功率谱
标记功率谱提供了一种计算高效的方法,利用为功率谱开发的常规分析工具,从物质密度场中提取非高斯信息,而无需明确计算高阶相关因子。在这项工作中,我们探索了用于重新加权密度场的标记函数的最优形式,以最大限度地约束宇宙学。我们证明,增加标记函数或乘以一个常数不会带来额外的信息增益,这大大缩小了我们寻找最优标记的空间。我们量化了这个最优函数的信息增益,并将其与之前文献中提出的标记函数进行了比较。我们发现,与单独使用传统的功率谱相比,我们可以在 $\sigma_8$ 和 $\Omega_m$ 中分别获得约 $\sim2$ 倍和 $\sim4$ 倍的较小误差,与其他提出的标记相比,在应用于相同数据集时提高了 $\sim60\%$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weak Lensing analysis of Abell 2390 using short exposures Optimizing Redshift Distribution Inference through Joint Self-Calibration and Clustering-Redshift Synergy Reionization relics in the cross-correlation between the Ly$α$ forest and 21 cm intensity mapping in the post-reionization era The Low-Redshift Lyman Continuum Survey: The Roles of Stellar Feedback and ISM Geometry in LyC Escape First confirmation of anisotropic bias from statistically anisotropic matter distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1