ForestFlow: cosmological emulation of Lyman-$α$ forest clustering from linear to nonlinear scales

J. Chaves-Montero, L. Cabayol-Garcia, M. Lokken, A. Font-Ribera, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, S. Cole, A. de la Macorra, S. Ferraro, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, G. Gutierrez, K. Honscheid, R. Kehoe, D. Kirkby, A. Kremin, A. Lambert, M. Landriau, M. Manera, P. Martini, R. Miquel, A. Muñoz-Gutiérrez, G. Niz, I. Pérez-Ràfols, G. Rossi, E. Sanchez, M. Schubnell, D. Sprayberry, G. Tarlé, B. A. Weaver
{"title":"ForestFlow: cosmological emulation of Lyman-$α$ forest clustering from linear to nonlinear scales","authors":"J. Chaves-Montero, L. Cabayol-Garcia, M. Lokken, A. Font-Ribera, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, S. Cole, A. de la Macorra, S. Ferraro, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, G. Gutierrez, K. Honscheid, R. Kehoe, D. Kirkby, A. Kremin, A. Lambert, M. Landriau, M. Manera, P. Martini, R. Miquel, A. Muñoz-Gutiérrez, G. Niz, I. Pérez-Ràfols, G. Rossi, E. Sanchez, M. Schubnell, D. Sprayberry, G. Tarlé, B. A. Weaver","doi":"arxiv-2409.05682","DOIUrl":null,"url":null,"abstract":"On large scales, measurements of the Lyman-$\\alpha$ forest offer insights\ninto the expansion history of the Universe, while on small scales, these impose\nstrict constraints on the growth history, the nature of dark matter, and the\nsum of neutrino masses. This work introduces ForestFlow, a cosmological\nemulator designed to bridge the gap between large- and small-scale\nLyman-$\\alpha$ forest analyses. Using conditional normalizing flows, ForestFlow\nemulates the 2 Lyman-$\\alpha$ linear biases ($b_\\delta$ and $b_\\eta$) and 6\nparameters describing small-scale deviations of the 3D flux power spectrum\n($P_\\mathrm{3D}$) from linear theory. These 8 parameters are modeled as a\nfunction of cosmology $\\unicode{x2013}$ the small-scale amplitude and slope of\nthe linear power spectrum $\\unicode{x2013}$ and the physics of the\nintergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow\ncan predict $P_\\mathrm{3D}$ on arbitrarily large (linear) scales and the 1D\nflux power spectrum ($P_\\mathrm{1D}$) $\\unicode{x2013}$ the primary observable\nfor small-scale analyses $\\unicode{x2013}$ without the need for interpolation\nor extrapolation. Consequently, ForestFlow enables for the first time\nmultiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological\nhydrodynamical simulations spanning redshifts from $z=2$ to $4.5$, ForestFlow\nachieves $3$ and $1.5\\%$ precision in describing $P_\\mathrm{3D}$ and\n$P_\\mathrm{1D}$ from linear scales to $k=5\\,\\mathrm{Mpc}^{-1}$ and\n$k_\\parallel=4\\,\\mathrm{Mpc}^{-1}$, respectively. Thanks to its\nparameterization, the precision of the emulator is also similar for both\nionization histories and two extensions to the $\\Lambda$CDM model\n$\\unicode{x2013}$ massive neutrinos and curvature $\\unicode{x2013}$ not\nincluded in the training set. ForestFlow will be crucial for the cosmological\nanalysis of Lyman-$\\alpha$ forest measurements from the DESI survey.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On large scales, measurements of the Lyman-$\alpha$ forest offer insights into the expansion history of the Universe, while on small scales, these impose strict constraints on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a cosmological emulator designed to bridge the gap between large- and small-scale Lyman-$\alpha$ forest analyses. Using conditional normalizing flows, ForestFlow emulates the 2 Lyman-$\alpha$ linear biases ($b_\delta$ and $b_\eta$) and 6 parameters describing small-scale deviations of the 3D flux power spectrum ($P_\mathrm{3D}$) from linear theory. These 8 parameters are modeled as a function of cosmology $\unicode{x2013}$ the small-scale amplitude and slope of the linear power spectrum $\unicode{x2013}$ and the physics of the intergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow can predict $P_\mathrm{3D}$ on arbitrarily large (linear) scales and the 1D flux power spectrum ($P_\mathrm{1D}$) $\unicode{x2013}$ the primary observable for small-scale analyses $\unicode{x2013}$ without the need for interpolation or extrapolation. Consequently, ForestFlow enables for the first time multiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological hydrodynamical simulations spanning redshifts from $z=2$ to $4.5$, ForestFlow achieves $3$ and $1.5\%$ precision in describing $P_\mathrm{3D}$ and $P_\mathrm{1D}$ from linear scales to $k=5\,\mathrm{Mpc}^{-1}$ and $k_\parallel=4\,\mathrm{Mpc}^{-1}$, respectively. Thanks to its parameterization, the precision of the emulator is also similar for both ionization histories and two extensions to the $\Lambda$CDM model $\unicode{x2013}$ massive neutrinos and curvature $\unicode{x2013}$ not included in the training set. ForestFlow will be crucial for the cosmological analysis of Lyman-$\alpha$ forest measurements from the DESI survey.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ForestFlow:从线性到非线性尺度的莱曼-$α$森林聚类的宇宙学模拟
在大尺度上,对莱曼-$\alpha$森林的测量提供了对宇宙膨胀历史的洞察,而在小尺度上,这些测量对宇宙的成长历史、暗物质的性质以及中微子质量的总和施加了严格的约束。这项工作介绍了ForestFlow,这是一个宇宙学模拟器,旨在弥合大尺度和小尺度莱曼-$\alpha$森林分析之间的差距。利用条件归一化流,ForestFlow模拟了2个莱曼-$alpha$线性偏差($b_Δ$和$b_eta$)和6个描述三维通量功率谱($P_\mathrm{3D}$)与线性理论的小尺度偏差的参数。这8个参数被建模为宇宙学($unicode{x2013}$)、线性功率谱的小尺度振幅和斜率($unicode{x2013}$)以及银河介质物理学的函数。因此,与波尔兹曼求解器相结合,ForestFlow可以预测任意大(线性)尺度的P_\mathrm{3D}$和1D流功率谱(P_\mathrm{1D}$)$unicode{x2013}$,这是小规模分析的主要观测指标$unicode{x2013}$,而不需要内插法或外推法。因此,ForestFlow首次实现了多尺度分析。ForestFlow在一套30个固定和配对的宇宙流体力学模拟上进行了训练,红移范围从$z=2$到$4.5$,ForestFlow达到了$3$和$1.5%的精度,分别描述了从线性尺度到k=5,\mathrm{Mpc}^{-1}$和k_parallel=4,\mathrm{Mpc}^{-1}$的P_mathrm{3D}$和P_mathrm{1D}$。得益于参数化,仿真器的精度对于两种离子化历史以及训练集中未包含的$\Lambda$CDM模型的两个扩展$unicode{x2013}$大质量中微子和曲率$unicode{x2013}$也是相似的。ForestFlow对于从DESI巡天中得到的莱曼-$α$森林测量结果的宇宙学分析至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weak Lensing analysis of Abell 2390 using short exposures Optimizing Redshift Distribution Inference through Joint Self-Calibration and Clustering-Redshift Synergy Reionization relics in the cross-correlation between the Ly$α$ forest and 21 cm intensity mapping in the post-reionization era The Low-Redshift Lyman Continuum Survey: The Roles of Stellar Feedback and ISM Geometry in LyC Escape First confirmation of anisotropic bias from statistically anisotropic matter distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1