Inferring Cosmological Parameters on SDSS via Domain-Generalized Neural Networks and Lightcone Simulations

Jun-Young Lee, Ji-hoon Kim, Minyong Jung, Boon Kiat Oh, Yongseok Jo, Songyoun Park, Jaehyun Lee, Yuan-Sen Ting, Ho Seong Hwang
{"title":"Inferring Cosmological Parameters on SDSS via Domain-Generalized Neural Networks and Lightcone Simulations","authors":"Jun-Young Lee, Ji-hoon Kim, Minyong Jung, Boon Kiat Oh, Yongseok Jo, Songyoun Park, Jaehyun Lee, Yuan-Sen Ting, Ho Seong Hwang","doi":"arxiv-2409.02256","DOIUrl":null,"url":null,"abstract":"We present a proof-of-concept simulation-based inference on $\\Omega_{\\rm m}$\nand $\\sigma_{8}$ from the SDSS BOSS LOWZ NGC catalog using neural networks and\ndomain generalization techniques without the need of summary statistics. Using\nrapid lightcone simulations, ${\\rm L{\\scriptsize -PICOLA}}$, mock galaxy\ncatalogs are produced that fully incorporate the observational effects. The\ncollection of galaxies is fed as input to a point cloud-based network,\n${\\texttt{Minkowski-PointNet}}$. We also add relatively more accurate ${\\rm\nG{\\scriptsize ADGET}}$ mocks to obtain robust and generalizable neural\nnetworks. By explicitly learning the representations which reduces the\ndiscrepancies between the two different datasets via the semantic alignment\nloss term, we show that the latent space configuration aligns into a single\nplane in which the two cosmological parameters form clear axes. Consequently,\nduring inference, the SDSS BOSS LOWZ NGC catalog maps onto the plane,\ndemonstrating effective generalization and improving prediction accuracy\ncompared to non-generalized models. Results from the ensemble of 25\nindependently trained machines find $\\Omega_{\\rm m}=0.339 \\pm 0.056$ and\n$\\sigma_{8}=0.801 \\pm 0.061$, inferred only from the distribution of galaxies\nin the lightcone slices without relying on any indirect summary statistics. A\nsingle machine that best adapts to the ${\\rm G{\\scriptsize ADGET}}$ mocks\nyields a tighter prediction of $\\Omega_{\\rm m}=0.282 \\pm 0.014$ and\n$\\sigma_{8}=0.786 \\pm 0.036$. We emphasize that adaptation across multiple\ndomains can enhance the robustness of the neural networks in observational\ndata.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a proof-of-concept simulation-based inference on $\Omega_{\rm m}$ and $\sigma_{8}$ from the SDSS BOSS LOWZ NGC catalog using neural networks and domain generalization techniques without the need of summary statistics. Using rapid lightcone simulations, ${\rm L{\scriptsize -PICOLA}}$, mock galaxy catalogs are produced that fully incorporate the observational effects. The collection of galaxies is fed as input to a point cloud-based network, ${\texttt{Minkowski-PointNet}}$. We also add relatively more accurate ${\rm G{\scriptsize ADGET}}$ mocks to obtain robust and generalizable neural networks. By explicitly learning the representations which reduces the discrepancies between the two different datasets via the semantic alignment loss term, we show that the latent space configuration aligns into a single plane in which the two cosmological parameters form clear axes. Consequently, during inference, the SDSS BOSS LOWZ NGC catalog maps onto the plane, demonstrating effective generalization and improving prediction accuracy compared to non-generalized models. Results from the ensemble of 25 independently trained machines find $\Omega_{\rm m}=0.339 \pm 0.056$ and $\sigma_{8}=0.801 \pm 0.061$, inferred only from the distribution of galaxies in the lightcone slices without relying on any indirect summary statistics. A single machine that best adapts to the ${\rm G{\scriptsize ADGET}}$ mocks yields a tighter prediction of $\Omega_{\rm m}=0.282 \pm 0.014$ and $\sigma_{8}=0.786 \pm 0.036$. We emphasize that adaptation across multiple domains can enhance the robustness of the neural networks in observational data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过域广义神经网络和光锥模拟推断 SDSS 上的宇宙学参数
我们利用神经网络和域泛化技术,在不需要汇总统计的情况下,对SDSS BOSS LOWZ NGC星表中的$\Omega_{\rm m}$和$\sigma_{8}$进行了基于概念验证的模拟推断。利用快速光锥模拟(${rm L\scriptsize -PICOLA}}$),生成了完全包含观测效应的模拟星系目录。星系集合被输入到一个基于点云的网络中,${texttt{Minkowski-PointNet}}$。我们还添加了相对更精确的${rmG{scriptsize ADGET}}$模拟,以获得稳健且可泛化的神经网络。通过语义对齐损失项,我们明确地学习了减少两个不同数据集之间差异的表征,结果表明潜在空间配置对齐到了一个单一平面,其中两个宇宙学参数形成了清晰的轴线。因此,在推理过程中,SDSS BOSS LOWZ NGC 星表映射到该平面上,显示了有效的泛化,与非泛化模型相比,提高了预测精度。由25台独立训练过的机器组成的集合的结果显示:$\Omega_{\rm m}=0.339 \pm 0.056$和$\sigma_{8}=0.801 \pm 0.061$,它们都是仅从光锥切片中的星系分布推断出来的,而不依赖任何间接的汇总统计。如果有一台机器能够最好地适应${/rm G{scriptsize ADGET}}$模拟,那么就能得到更精确的预测结果:$\Omega_{/rm m}=0.282 \pm 0.014$和$\sigma_{8}=0.786 \pm 0.036$。我们强调跨多域适应可以增强神经网络在观测数据中的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weak Lensing analysis of Abell 2390 using short exposures Optimizing Redshift Distribution Inference through Joint Self-Calibration and Clustering-Redshift Synergy Reionization relics in the cross-correlation between the Ly$α$ forest and 21 cm intensity mapping in the post-reionization era The Low-Redshift Lyman Continuum Survey: The Roles of Stellar Feedback and ISM Geometry in LyC Escape First confirmation of anisotropic bias from statistically anisotropic matter distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1