Evaluating the Impact of Multiple DER Aggregators on Wholesale Energy Markets: A Hybrid Mean Field Approach

Jun He, Andrew L. Liu
{"title":"Evaluating the Impact of Multiple DER Aggregators on Wholesale Energy Markets: A Hybrid Mean Field Approach","authors":"Jun He, Andrew L. Liu","doi":"arxiv-2409.00107","DOIUrl":null,"url":null,"abstract":"The integration of distributed energy resources (DERs) into wholesale energy\nmarkets can greatly enhance grid flexibility, improve market efficiency, and\ncontribute to a more sustainable energy future. As DERs -- such as solar PV\npanels and energy storage -- proliferate, effective mechanisms are needed to\nensure that small prosumers can participate meaningfully in these markets. We\nstudy a wholesale market model featuring multiple DER aggregators, each\ncontrolling a portfolio of DER resources and bidding into the market on behalf\nof the DER asset owners. The key of our approach lies in recognizing the\nrepeated nature of market interactions the ability of participants to learn and\nadapt over time. Specifically, Aggregators repeatedly interact with each other\nand with other suppliers in the wholesale market, collectively shaping\nwholesale electricity prices (aka the locational marginal prices (LMPs)). We\nmodel this multi-agent interaction using a mean-field game (MFG), which uses\nmarket information -- reflecting the average behavior of market participants --\nto enable each aggregator to predict long-term LMP trends and make informed\ndecisions. For each aggregator, because they control the DERs within their\nportfolio under certain contract structures, we employ a mean-field control\n(MFC) approach (as opposed to a MFG) to learn an optimal policy that maximizes\nthe total rewards of the DERs under their management. We also propose a\nreinforcement learning (RL)-based method to help each agent learn optimal\nstrategies within the MFG framework, enhancing their ability to adapt to market\nconditions and uncertainties. Numerical simulations show that LMPs quickly\nreach a steady state in the hybrid mean-field approach. Furthermore, our\nresults demonstrate that the combination of energy storage and mean-field\nlearning significantly reduces price volatility compared to scenarios without\nstorage.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of distributed energy resources (DERs) into wholesale energy markets can greatly enhance grid flexibility, improve market efficiency, and contribute to a more sustainable energy future. As DERs -- such as solar PV panels and energy storage -- proliferate, effective mechanisms are needed to ensure that small prosumers can participate meaningfully in these markets. We study a wholesale market model featuring multiple DER aggregators, each controlling a portfolio of DER resources and bidding into the market on behalf of the DER asset owners. The key of our approach lies in recognizing the repeated nature of market interactions the ability of participants to learn and adapt over time. Specifically, Aggregators repeatedly interact with each other and with other suppliers in the wholesale market, collectively shaping wholesale electricity prices (aka the locational marginal prices (LMPs)). We model this multi-agent interaction using a mean-field game (MFG), which uses market information -- reflecting the average behavior of market participants -- to enable each aggregator to predict long-term LMP trends and make informed decisions. For each aggregator, because they control the DERs within their portfolio under certain contract structures, we employ a mean-field control (MFC) approach (as opposed to a MFG) to learn an optimal policy that maximizes the total rewards of the DERs under their management. We also propose a reinforcement learning (RL)-based method to help each agent learn optimal strategies within the MFG framework, enhancing their ability to adapt to market conditions and uncertainties. Numerical simulations show that LMPs quickly reach a steady state in the hybrid mean-field approach. Furthermore, our results demonstrate that the combination of energy storage and mean-field learning significantly reduces price volatility compared to scenarios without storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估多个 DER 聚合器对能源批发市场的影响:混合均值场方法
将分布式能源资源(DER)纳入能源批发市场,可以大大提高电网的灵活性,提高市场效率,并有助于实现更可持续的能源未来。随着太阳能光伏板和储能等 DER 的激增,需要建立有效的机制来确保小型消费者能够有意义地参与这些市场。Westudy 的批发市场模式以多个 DER 聚合器为特色,每个聚合器控制一个 DER 资源组合,并代表 DER 资产所有者参与市场竞标。我们的方法的关键在于认识到市场互动的反复性以及参与者随时间学习和适应的能力。具体来说,聚合器在批发市场中与其他供应商反复互动,共同影响批发电价(又称本地边际价格 (LMP))。我们使用均场博弈(MFG)来模拟这种多代理互动,该博弈使用市场信息(反映市场参与者的平均行为),使每个聚合者都能预测 LMP 的长期趋势,并做出明智的决策。对于每个聚合器而言,由于它们根据特定的合同结构控制其投资组合中的 DER,因此我们采用均场控制(MFC)方法(而非 MFG)来学习最优策略,使其管理下的 DER 的总回报最大化。我们还提出了基于强化学习(RL)的方法,以帮助每个代理在 MFG 框架内学习最优策略,从而增强其适应市场条件和不确定性的能力。数值模拟表明,在混合均值场方法中,LMPs 很快就能达到稳定状态。此外,我们的研究结果表明,与没有储能的情况相比,储能和均值场学习的结合大大降低了价格波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1