{"title":"Theoretical Modeling of Indium Adatoms on Reconstructed GaAs(001) and AlAs(001) Surfaces","authors":"V. A. Roldugin, M. A. Soldatov","doi":"10.1134/S2635167623601328","DOIUrl":null,"url":null,"abstract":"<p>GaAs/AlAs(001) (2 × 4) is one of the most optimal substrates for optoelectronic and nanophotonic applications. Droplet epitaxy allows high-quality quantum dot (QD) arrays with the desired properties to be obtained, but the detailed mechanism of deposition and subsequent epitaxial growth is still questionable. In this paper, the growth mechanism of indium QDs on various GaAs/AlAs(001) surfaces is studied within calculations of density functional theory. Full geometry optimization, in which the coordinates of substrate atoms can be altered under adatom impact, is shown to be a straightforward technique for the simulation of adsorption processes. The obtained results are in good agreement with conventional methods and well-known findings. The proposed approach could become standard practice and extend the understanding of droplet epitaxy.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 2","pages":"225 - 229"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167623601328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
GaAs/AlAs(001) (2 × 4) is one of the most optimal substrates for optoelectronic and nanophotonic applications. Droplet epitaxy allows high-quality quantum dot (QD) arrays with the desired properties to be obtained, but the detailed mechanism of deposition and subsequent epitaxial growth is still questionable. In this paper, the growth mechanism of indium QDs on various GaAs/AlAs(001) surfaces is studied within calculations of density functional theory. Full geometry optimization, in which the coordinates of substrate atoms can be altered under adatom impact, is shown to be a straightforward technique for the simulation of adsorption processes. The obtained results are in good agreement with conventional methods and well-known findings. The proposed approach could become standard practice and extend the understanding of droplet epitaxy.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.