Policy consequences of the new neuroeconomic framework

A. David Redish, Henri Scott Chastain, Carlisle Ford Runge, Brian M. Sweis, Scott E. Allen, Antara Haldar
{"title":"Policy consequences of the new neuroeconomic framework","authors":"A. David Redish, Henri Scott Chastain, Carlisle Ford Runge, Brian M. Sweis, Scott E. Allen, Antara Haldar","doi":"arxiv-2409.07373","DOIUrl":null,"url":null,"abstract":"Current theories of decision making suggest that the neural circuits in\nmammalian brains (including humans) computationally combine representations of\nthe past (memory), present (perception), and future (agentic goals) to take\nactions that achieve the needs of the agent. How information is represented\nwithin those neural circuits changes what computations are available to that\nsystem which changes how agents interact with their world to take those\nactions. We argue that the computational neuroscience of decision making\nprovides a new microeconomic framework (neuroeconomics) that offers new\nopportunities to construct policies that interact with those decision-making\nsystems to improve outcomes. After laying out the computational processes\nunderlying decision making in mammalian brains, we present four applications of\nthis logic with policy consequences: (1) contingency management as a treatment\nfor addiction, (2) precommitment and the sensitivity to sunk costs, (3) media\nconsequences for changes in housing prices after a disaster, and (4) how social\ninteractions underlie the success (and failure) of microfinance institutions.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current theories of decision making suggest that the neural circuits in mammalian brains (including humans) computationally combine representations of the past (memory), present (perception), and future (agentic goals) to take actions that achieve the needs of the agent. How information is represented within those neural circuits changes what computations are available to that system which changes how agents interact with their world to take those actions. We argue that the computational neuroscience of decision making provides a new microeconomic framework (neuroeconomics) that offers new opportunities to construct policies that interact with those decision-making systems to improve outcomes. After laying out the computational processes underlying decision making in mammalian brains, we present four applications of this logic with policy consequences: (1) contingency management as a treatment for addiction, (2) precommitment and the sensitivity to sunk costs, (3) media consequences for changes in housing prices after a disaster, and (4) how social interactions underlie the success (and failure) of microfinance institutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新神经经济框架的政策后果
当前的决策理论认为,哺乳动物(包括人类)大脑中的神经回路通过计算将过去(记忆)、现在(感知)和未来(行为主体目标)的表征结合起来,从而采取满足行为主体需求的行动。如何在这些神经回路中表征信息会改变该系统可进行的计算,从而改变代理如何与他们的世界互动以采取这些行动。我们认为,决策的计算神经科学提供了一个新的微观经济框架(神经经济学),为构建与这些决策系统互动以改善结果的政策提供了新的机会。在阐述了哺乳动物大脑中决策制定的计算过程之后,我们介绍了这一逻辑的四种具有政策后果的应用:(1)作为成瘾治疗方法的应急管理,(2)预先承诺和对沉没成本的敏感性,(3)灾难后住房价格变化的媒体后果,以及(4)社会互动是小额信贷机构成功(和失败)的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1