The Mismeasure of Weather: Using Remotely Sensed Earth Observation Data in Economic Context

Anna Josephson, Jeffrey D. Michler, Talip Kilic, Siobhan Murray
{"title":"The Mismeasure of Weather: Using Remotely Sensed Earth Observation Data in Economic Context","authors":"Anna Josephson, Jeffrey D. Michler, Talip Kilic, Siobhan Murray","doi":"arxiv-2409.07506","DOIUrl":null,"url":null,"abstract":"The availability of weather data from remotely sensed Earth observation (EO)\ndata has reduced the cost of including weather variables in econometric models.\nWeather variables are common instrumental variables used to predict economic\noutcomes and serve as an input into modelling crop yields for rainfed\nagriculture. The use of EO data in econometric applications has only recently\nbeen met with a critical assessment of the suitability and quality of this data\nin economics. We quantify the significance and magnitude of the effect of\nmeasurement error in EO data in the context of smallholder agricultural\nproductivity. We find that different measurement methods from different EO\nsources: findings are not robust to the choice of EO dataset and outcomes are\nnot simply affine transformations of one another. This begs caution on the part\nof researchers using these data and suggests that robustness checks should\ninclude testing alternative sources of EO data.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The availability of weather data from remotely sensed Earth observation (EO) data has reduced the cost of including weather variables in econometric models. Weather variables are common instrumental variables used to predict economic outcomes and serve as an input into modelling crop yields for rainfed agriculture. The use of EO data in econometric applications has only recently been met with a critical assessment of the suitability and quality of this data in economics. We quantify the significance and magnitude of the effect of measurement error in EO data in the context of smallholder agricultural productivity. We find that different measurement methods from different EO sources: findings are not robust to the choice of EO dataset and outcomes are not simply affine transformations of one another. This begs caution on the part of researchers using these data and suggests that robustness checks should include testing alternative sources of EO data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天气的误测:在经济背景下使用遥感地球观测数据
从遥感地球观测(EO)数据中获取天气数据降低了将天气变量纳入计量经济学模型的成本。天气变量是用于预测经济结果的常见工具变量,也是雨水灌溉农业作物产量建模的输入变量。在计量经济学应用中使用环 境观测数据时,最近才对这些数据在经济学中的适用性和质量进行了严格评估。我们以小农农业生产率为背景,量化了 EO 数据测量误差影响的意义和程度。我们发现,来自不同环 境观测数据源的不同测量方法:研究结果并不因选择的环境观测数据集而稳健,结果也不是简单的仿射变换。这就要求研究人员在使用这些数据时要谨慎,并建议稳健性检查应包括测试替代的环 境观测数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1