Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact

Huaqing Xie, Xingcheng Xu, Fangjia Yan, Xun Qian, Yanqing Yang
{"title":"Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact","authors":"Huaqing Xie, Xingcheng Xu, Fangjia Yan, Xun Qian, Yanqing Yang","doi":"arxiv-2409.02551","DOIUrl":null,"url":null,"abstract":"GDP is a vital measure of a country's economic health, reflecting the total\nvalue of goods and services produced. Forecasting GDP growth is essential for\neconomic planning, as it helps governments, businesses, and investors\nanticipate trends, make informed decisions, and promote stability and growth.\nWhile most previous works focus on the prediction of the GDP growth rate for a\nsingle country or by machine learning methods, in this paper we give a\ncomprehensive study on the GDP growth forecasting in the multi-country scenario\nby deep learning algorithms. For the prediction of the GDP growth where only\nGDP growth values are used, linear regression is generally better than deep\nlearning algorithms. However, for the regression and the prediction of the GDP\ngrowth with selected economic indicators, deep learning algorithms could be\nsuperior to linear regression. We also investigate the influence of the novel\ndata -- the light intensity data on the prediction of the GDP growth, and\nnumerical experiments indicate that they do not necessarily improve the\nprediction performance. Code is provided at\nhttps://github.com/Sariel2018/Multi-Country-GDP-Prediction.git.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

GDP is a vital measure of a country's economic health, reflecting the total value of goods and services produced. Forecasting GDP growth is essential for economic planning, as it helps governments, businesses, and investors anticipate trends, make informed decisions, and promote stability and growth. While most previous works focus on the prediction of the GDP growth rate for a single country or by machine learning methods, in this paper we give a comprehensive study on the GDP growth forecasting in the multi-country scenario by deep learning algorithms. For the prediction of the GDP growth where only GDP growth values are used, linear regression is generally better than deep learning algorithms. However, for the regression and the prediction of the GDP growth with selected economic indicators, deep learning algorithms could be superior to linear regression. We also investigate the influence of the novel data -- the light intensity data on the prediction of the GDP growth, and numerical experiments indicate that they do not necessarily improve the prediction performance. Code is provided at https://github.com/Sariel2018/Multi-Country-GDP-Prediction.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多国 GDP 预测的深度学习:模型性能和数据影响研究
国内生产总值是衡量一个国家经济健康状况的重要指标,反映了商品和服务生产的总价值。预测 GDP 增长对经济规划至关重要,因为它有助于政府、企业和投资者预测趋势,做出明智决策,并促进稳定和增长。虽然之前的大多数工作都集中在预测单个国家的 GDP 增长率或使用机器学习方法,但在本文中,我们对使用深度学习算法预测多国情况下的 GDP 增长进行了全面研究。对于只使用 GDP 增长值的 GDP 增长预测,线性回归通常优于深度学习算法。但是,对于带有选定经济指标的 GDP 增长的回归和预测,深度学习算法可能优于线性回归。我们还研究了新数据--光照强度数据对 GDP 增长预测的影响,数值实验表明它们并不一定能提高预测性能。代码见https://github.com/Sariel2018/Multi-Country-GDP-Prediction.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1