Influence of Water Vapor on the Oxidation of Pure Titanium

IF 2.1 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Oxidation of Metals Pub Date : 2024-08-13 DOI:10.1007/s11085-024-10288-1
B. Öztürk, M. Rudolphi, E. M. H. White, D. Dickes, U. Glatzel, M. C. Galetz
{"title":"Influence of Water Vapor on the Oxidation of Pure Titanium","authors":"B. Öztürk,&nbsp;M. Rudolphi,&nbsp;E. M. H. White,&nbsp;D. Dickes,&nbsp;U. Glatzel,&nbsp;M. C. Galetz","doi":"10.1007/s11085-024-10288-1","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium and titanium alloys are extensively used in the aerospace, automotive, and medical industries due to their high chemical and mechanical stability. In a previous study, the influence of water vapor on the growth of the oxide scale and the formation of the oxygen diffusion zone (ODZ) for Ti-6Al-4V was investigated using a 6-zone furnace. To elucidate the effect of water vapor on the oxide scale growth and ODZ, without the effect of alloying elements on diffusion, a systematic comparative study at 500, 600, and 700 °C for up to 500 h was carried out on pure Ti. Inert marker experiments showed that outward scale growth and diffusion of Ti<sup>4+</sup> were promoted by water vapor. Additionally, the extent of oxygen enrichment in the subsurface zone (ODZ) as a function of temperature and time was determined for pure Ti by nanoindentation profiles and compared with results obtained for Ti-6Al-4V. The thickness of the ODZ increased with increasing temperature and time for dry air and humid air. The diffusion of oxygen ions within pure Ti and Ti-6Al-4V was not significantly affected by the presence of water vapor in the oxidizing environment. The effect of water vapor on the oxide scale spallation was found to be less critical for pure Ti when compared to Ti-6Al-4V.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 6","pages":"1341 - 1351"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10288-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10288-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium and titanium alloys are extensively used in the aerospace, automotive, and medical industries due to their high chemical and mechanical stability. In a previous study, the influence of water vapor on the growth of the oxide scale and the formation of the oxygen diffusion zone (ODZ) for Ti-6Al-4V was investigated using a 6-zone furnace. To elucidate the effect of water vapor on the oxide scale growth and ODZ, without the effect of alloying elements on diffusion, a systematic comparative study at 500, 600, and 700 °C for up to 500 h was carried out on pure Ti. Inert marker experiments showed that outward scale growth and diffusion of Ti4+ were promoted by water vapor. Additionally, the extent of oxygen enrichment in the subsurface zone (ODZ) as a function of temperature and time was determined for pure Ti by nanoindentation profiles and compared with results obtained for Ti-6Al-4V. The thickness of the ODZ increased with increasing temperature and time for dry air and humid air. The diffusion of oxygen ions within pure Ti and Ti-6Al-4V was not significantly affected by the presence of water vapor in the oxidizing environment. The effect of water vapor on the oxide scale spallation was found to be less critical for pure Ti when compared to Ti-6Al-4V.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水蒸气对纯钛氧化的影响
钛和钛合金因其高度的化学和机械稳定性而被广泛应用于航空航天、汽车和医疗行业。在之前的一项研究中,使用 6 区熔炉研究了水蒸气对 Ti-6Al-4V 氧化鳞生长和氧扩散区(ODZ)形成的影响。为了阐明水蒸气对氧化鳞生长和 ODZ 的影响,而不考虑合金元素对扩散的影响,在 500、600 和 700 °C 下对纯钛进行了长达 500 小时的系统比较研究。惰性标记实验表明,水蒸气促进了鳞片向外生长和 Ti4+ 的扩散。此外,还通过纳米压痕曲线测定了纯钛表层下区域(ODZ)的富氧程度与温度和时间的函数关系,并与 Ti-6Al-4V 的结果进行了比较。在干燥空气和潮湿空气中,ODZ 的厚度随着温度和时间的增加而增加。氧离子在纯钛和 Ti-6Al-4V 中的扩散没有受到氧化环境中水蒸气的显著影响。与 Ti-6Al-4V 相比,水蒸气对纯钛的氧化鳞片剥落影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oxidation of Metals
Oxidation of Metals 工程技术-冶金工程
CiteScore
5.10
自引率
9.10%
发文量
47
审稿时长
2.2 months
期刊介绍: Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.
期刊最新文献
Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques Editorial on Modeling, Prediction and Simulation Editorial on Oxidation in Complex Atmospheres Editorial on Oxidation of Novel Metallic Materials (Intermetallics, MMCs, HEAs…) Editorial on Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1