Longfei Liu, Liam F. Wood, Phalgun Nelaturu, Tianrui Duan, Chuan Zhang, Fan Zhang, Dan J. Thoma, John H. Perepezko
{"title":"Oxidation of a Mo-Si-B-Ti Alloy","authors":"Longfei Liu, Liam F. Wood, Phalgun Nelaturu, Tianrui Duan, Chuan Zhang, Fan Zhang, Dan J. Thoma, John H. Perepezko","doi":"10.1007/s11085-024-10298-z","DOIUrl":null,"url":null,"abstract":"<div><p>The oxidation of a titanium (Ti)-modified Mo-Si-B alloy designed for aerospace applications was investigated. Test samples were produced using arc melting and laser powder bed fusion (LPBF) additive manufacturing methods. To address high-temperature oxidation, a three-step coating strategy was employed, comprising a Mo precoat, Si and B co-deposition, and a conditioning step for the formation of a self-healing coating. The study evaluates the oxidation resistance of both uncoated and coated Mo-Si-B-Ti alloys at temperatures ranging from 1100 to 1300 °C. Uncoated alloys exhibited catastrophic mass loss within 10 hours at temperatures between 800 and 1300 °C. In contrast, the coated samples demonstrated minimal mass loss at 1300 °C after 50 hours, with only minor mass gain observed under cyclic thermal loading after 300 cycles. Microstructural analysis revealed distinct differences between arc-melted and LPBF samples, with the latter displaying an ultrafine dendritic microstructure. The applied coating effectively prevented oxygen diffusion into the substrate, even at elevated temperatures, showcasing its protective capabilities. During cyclic tests, the coating exhibited a self-healing mechanism, with cracks filled with borosilica contributing to prolonged environmental resistance.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 6","pages":"1383 - 1393"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10298-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidation of a titanium (Ti)-modified Mo-Si-B alloy designed for aerospace applications was investigated. Test samples were produced using arc melting and laser powder bed fusion (LPBF) additive manufacturing methods. To address high-temperature oxidation, a three-step coating strategy was employed, comprising a Mo precoat, Si and B co-deposition, and a conditioning step for the formation of a self-healing coating. The study evaluates the oxidation resistance of both uncoated and coated Mo-Si-B-Ti alloys at temperatures ranging from 1100 to 1300 °C. Uncoated alloys exhibited catastrophic mass loss within 10 hours at temperatures between 800 and 1300 °C. In contrast, the coated samples demonstrated minimal mass loss at 1300 °C after 50 hours, with only minor mass gain observed under cyclic thermal loading after 300 cycles. Microstructural analysis revealed distinct differences between arc-melted and LPBF samples, with the latter displaying an ultrafine dendritic microstructure. The applied coating effectively prevented oxygen diffusion into the substrate, even at elevated temperatures, showcasing its protective capabilities. During cyclic tests, the coating exhibited a self-healing mechanism, with cracks filled with borosilica contributing to prolonged environmental resistance.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.