Comprehensive Study of the Stability of PtCu/C Catalysts for Low-Temperature Fuel Cells

IF 0.8 Q3 Engineering Nanotechnologies in Russia Pub Date : 2024-09-10 DOI:10.1134/S2635167624600913
S. V. Belenov, E. E. Moguchikh, A. S. Pavlets, I. V. Pankov, V. S. Menshchikov
{"title":"Comprehensive Study of the Stability of PtCu/C Catalysts for Low-Temperature Fuel Cells","authors":"S. V. Belenov,&nbsp;E. E. Moguchikh,&nbsp;A. S. Pavlets,&nbsp;I. V. Pankov,&nbsp;V. S. Menshchikov","doi":"10.1134/S2635167624600913","DOIUrl":null,"url":null,"abstract":"<div><p>The catalytic activity in the oxygen-reduction reaction and stability in various stress-testing modes are studied for bimetallic PtCu/C catalysts with platinum contents of 20 and 30 wt %, obtained by liquid-phase synthesis methods, is studied by cyclic-voltammetry methods on a rotating disk electrode in a three-electrode cell and as part of a membrane-electrode assembly in comparison with a commercial Pt/C catalyst. Significant differences in the degree of degradation of the studied PtCu/C and Pt/C catalysts for low-temperature fuel cells are shown, namely from 33 to 67% depending on the stress-testing method and catalyst composition.</p></div>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 2","pages":"243 - 252"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic activity in the oxygen-reduction reaction and stability in various stress-testing modes are studied for bimetallic PtCu/C catalysts with platinum contents of 20 and 30 wt %, obtained by liquid-phase synthesis methods, is studied by cyclic-voltammetry methods on a rotating disk electrode in a three-electrode cell and as part of a membrane-electrode assembly in comparison with a commercial Pt/C catalyst. Significant differences in the degree of degradation of the studied PtCu/C and Pt/C catalysts for low-temperature fuel cells are shown, namely from 33 to 67% depending on the stress-testing method and catalyst composition.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低温燃料电池的 PtCu/C 催化剂稳定性综合研究
通过液相合成方法获得的铂含量为 20 和 30 wt % 的双金属 PtCu/C 催化剂,与商用 Pt/C 催化剂相比,在三电极电池的旋转盘电极上以及作为膜电极组件的一部分,采用循环伏安法研究了氧还原反应中的催化活性和各种应力测试模式下的稳定性。结果表明,所研究的用于低温燃料电池的 PtCu/C 和 Pt/C 催化剂在降解程度上存在显著差异,根据应力测试方法和催化剂成分的不同,降解程度从 33% 到 67%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
期刊最新文献
Editorial Towards the Implementation of High-Throughput Next-Generation Sequencing Technology in Clinical Oncology. Where Are We Now? Separation of Short Fluorescently Labeled Peptides by Gel Electrophoresis for an In Vitro Translation Study Dendritic Silver Structures for the SERS Diagnostics of Liquids Aging Biomarkers in Assessing the Efficacy of Geroprotective Therapy: Problems and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1