Alex Stephens, Matthew Budd, Michal Staniaszek, Benoit Casseau, Paul Duckworth, Maurice Fallon, Nick Hawes, Bruno Lacerda
{"title":"Planning under uncertainty for safe robot exploration using Gaussian process prediction","authors":"Alex Stephens, Matthew Budd, Michal Staniaszek, Benoit Casseau, Paul Duckworth, Maurice Fallon, Nick Hawes, Bruno Lacerda","doi":"10.1007/s10514-024-10172-6","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration of new environments is a crucial challenge for mobile robots. This task becomes even more complex with the added requirement of ensuring safety. Here, safety refers to the robot staying in regions where the values of certain environmental conditions (such as terrain steepness or radiation levels) are within a predefined threshold. We consider two types of safe exploration problems. First, the robot has a map of its workspace, but the values of the environmental features relevant to safety are unknown beforehand and must be explored. Second, both the map and the environmental features are unknown, and the robot must build a map whilst remaining safe. Our proposed framework uses a Gaussian process to predict the value of the environmental features in unvisited regions. We then build a Markov decision process that integrates the Gaussian process predictions with the transition probabilities of the environmental model. The Markov decision process is then incorporated into an exploration algorithm that decides which new region of the environment to explore based on information value, predicted safety, and distance from the current position of the robot. We empirically evaluate the effectiveness of our framework through simulations and its application on a physical robot in an underground environment.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10172-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10172-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of new environments is a crucial challenge for mobile robots. This task becomes even more complex with the added requirement of ensuring safety. Here, safety refers to the robot staying in regions where the values of certain environmental conditions (such as terrain steepness or radiation levels) are within a predefined threshold. We consider two types of safe exploration problems. First, the robot has a map of its workspace, but the values of the environmental features relevant to safety are unknown beforehand and must be explored. Second, both the map and the environmental features are unknown, and the robot must build a map whilst remaining safe. Our proposed framework uses a Gaussian process to predict the value of the environmental features in unvisited regions. We then build a Markov decision process that integrates the Gaussian process predictions with the transition probabilities of the environmental model. The Markov decision process is then incorporated into an exploration algorithm that decides which new region of the environment to explore based on information value, predicted safety, and distance from the current position of the robot. We empirically evaluate the effectiveness of our framework through simulations and its application on a physical robot in an underground environment.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.