{"title":"Precise Individual Illumination Control of Matrix LED With Bypass Gate Driver and 8-Bit PWM","authors":"Jonghyuk Chae;Jaehun Jeong;Byeongha Park;Seungju Lee;Jongmin Park;Jinwook Burm","doi":"10.1109/TCSII.2024.3448489","DOIUrl":null,"url":null,"abstract":"Precise illumination control of matrix light-emitting diode (LED) headlamps is crucial for both energy efficiency in electric vehicles and driver safety. Enhancing energy efficiency extends the range of electric vehicles, while ensuring reliable illumination improves driver safety in autonomous vehicles. This brief discusses the control of illumination for eight serially connected LEDs using 8-bit pulse-width modulation (PWM) combined with a gate driver. A bypass gate driver, employing a cascode current mirror structure, manages the current through each LED, minimizing variations in analog string voltage. The proposed method supports 256 levels of illumination adjustment, making it suitable for adaptive front-lighting systems (AFLS). Implemented with TSMC’s 180-nm high-voltage CMOS technology, with a maximum power supply of 70V and a chip size of 5 mm2, the system ensures precise LED control and effectively prevents overcurrent.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 11","pages":"4653-4657"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10644111/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Precise illumination control of matrix light-emitting diode (LED) headlamps is crucial for both energy efficiency in electric vehicles and driver safety. Enhancing energy efficiency extends the range of electric vehicles, while ensuring reliable illumination improves driver safety in autonomous vehicles. This brief discusses the control of illumination for eight serially connected LEDs using 8-bit pulse-width modulation (PWM) combined with a gate driver. A bypass gate driver, employing a cascode current mirror structure, manages the current through each LED, minimizing variations in analog string voltage. The proposed method supports 256 levels of illumination adjustment, making it suitable for adaptive front-lighting systems (AFLS). Implemented with TSMC’s 180-nm high-voltage CMOS technology, with a maximum power supply of 70V and a chip size of 5 mm2, the system ensures precise LED control and effectively prevents overcurrent.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.