Spatio-Temporal Adaptive Weighted Fusion Network for Compressed Video Quality Enhancement

IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2024-08-14 DOI:10.1109/TCSII.2024.3444052
Tingrong Zhang;Xiaohai He;Qizhi Teng;Junxiong Cheng;Chao Ren
{"title":"Spatio-Temporal Adaptive Weighted Fusion Network for Compressed Video Quality Enhancement","authors":"Tingrong Zhang;Xiaohai He;Qizhi Teng;Junxiong Cheng;Chao Ren","doi":"10.1109/TCSII.2024.3444052","DOIUrl":null,"url":null,"abstract":"In recent years, many deep learning-based methods for improving the quality of compressed video have emerged, some of which utilize multiple reference frames to enhance the target frame. However, most of these methods directly aggregate the temporal information of the reference frames, ignoring the spatial information within the target frame. In this brief, we propose a spatio-temporal information adaptive weighted fusion network (STAWFN) to enhance compressed video quality by dynamically integrating spatial information and temporal information. Specifically, we utilize well-designed temporal feature extractor (TFE) and spatial feature extractor (SFE) to extract temporal and spatial information, respectively. And then an adaptive weighted feature fusion module is employed to effectively fuse temporal information and spatial information. In addition, we construct multi-channel enhanced residual block to refine the fused features for better enhancement capability. Comprehensive test results on HEVC-compressed videos show that the proposed method can significantly enhance the objective and subjective quality of compressed videos and reach state-of-the-art performance.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 12","pages":"5064-5068"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10637290/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, many deep learning-based methods for improving the quality of compressed video have emerged, some of which utilize multiple reference frames to enhance the target frame. However, most of these methods directly aggregate the temporal information of the reference frames, ignoring the spatial information within the target frame. In this brief, we propose a spatio-temporal information adaptive weighted fusion network (STAWFN) to enhance compressed video quality by dynamically integrating spatial information and temporal information. Specifically, we utilize well-designed temporal feature extractor (TFE) and spatial feature extractor (SFE) to extract temporal and spatial information, respectively. And then an adaptive weighted feature fusion module is employed to effectively fuse temporal information and spatial information. In addition, we construct multi-channel enhanced residual block to refine the fused features for better enhancement capability. Comprehensive test results on HEVC-compressed videos show that the proposed method can significantly enhance the objective and subjective quality of compressed videos and reach state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于提高压缩视频质量的时空自适应加权融合网络
近年来,出现了许多基于深度学习的提高压缩视频质量的方法,其中一些方法利用多个参考帧来增强目标帧。然而,这些方法大多直接聚合参考帧的时间信息,而忽略了目标帧内的空间信息。本文提出了一种时空信息自适应加权融合网络(STAWFN),通过动态整合空间信息和时间信息来提高压缩视频的质量。具体而言,我们利用精心设计的时间特征提取器(TFE)和空间特征提取器(SFE)分别提取时间和空间信息。然后采用自适应加权特征融合模块,有效融合时间信息和空间信息。此外,我们构建了多通道增强残差块,对融合特征进行细化,以获得更好的增强能力。对hevc压缩视频的综合测试结果表明,该方法可以显著提高压缩视频的客观和主观质量,达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
IEEE Circuits and Systems Society Information Table of Contents Incoming Editorial IEEE Circuits and Systems Society Information IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1