Spatial frequency decomposition with bandpass filters for multiscale analyses and functional correlations

IF 2 3区 材料科学 Q2 ENGINEERING, MECHANICAL Surface Topography: Metrology and Properties Pub Date : 2024-08-29 DOI:10.1088/2051-672x/ad6f2f
Christopher A Brown, François Blateyron, Johan Berglund, Adam J Murrison, Jack Jacob Jeswiet
{"title":"Spatial frequency decomposition with bandpass filters for multiscale analyses and functional correlations","authors":"Christopher A Brown, François Blateyron, Johan Berglund, Adam J Murrison, Jack Jacob Jeswiet","doi":"10.1088/2051-672x/ad6f2f","DOIUrl":null,"url":null,"abstract":"To address the essential problem in surface metrology of establishing functional correlations spatial, frequencies in topographic measurements are progressively decomposed into a large number of narrow bands. Bandpass filters and commercially available software are used. These bands can be analyzed with conventional surface texture parameters, like average roughness, Sa, or other parameters, for detailed, multiscale topographic characterizations. Earlier kinds of multiscale characterization, like relative area, required specialized software performing multiple triangular tiling exercises. Multiscale regression analyses can test strengths of functional correlations over a range of scales. Here, friction coefficients are regressed against standard surface texture parameters over the range of scales available in a measurement. Correlation strengths trend with the scales of the bandpass filters. Using bandpass frequency, i.e., wavelength or scale, decompositions, the R<sup>2</sup> at 25 μm, exceeds 0.9 for Sa compared with an R<sup>2</sup> of only 0.2 using the broader band of conventional roughness filtering. These improved, scale-specific functional correlations can facilitate scientific understandings and specifications of topographies in product and process design and in designs of quality assurance systems.","PeriodicalId":22028,"journal":{"name":"Surface Topography: Metrology and Properties","volume":"63 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Topography: Metrology and Properties","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2051-672x/ad6f2f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address the essential problem in surface metrology of establishing functional correlations spatial, frequencies in topographic measurements are progressively decomposed into a large number of narrow bands. Bandpass filters and commercially available software are used. These bands can be analyzed with conventional surface texture parameters, like average roughness, Sa, or other parameters, for detailed, multiscale topographic characterizations. Earlier kinds of multiscale characterization, like relative area, required specialized software performing multiple triangular tiling exercises. Multiscale regression analyses can test strengths of functional correlations over a range of scales. Here, friction coefficients are regressed against standard surface texture parameters over the range of scales available in a measurement. Correlation strengths trend with the scales of the bandpass filters. Using bandpass frequency, i.e., wavelength or scale, decompositions, the R2 at 25 μm, exceeds 0.9 for Sa compared with an R2 of only 0.2 using the broader band of conventional roughness filtering. These improved, scale-specific functional correlations can facilitate scientific understandings and specifications of topographies in product and process design and in designs of quality assurance systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带通滤波器进行空间频率分解,实现多尺度分析和功能相关性
为了解决表面计量学中建立空间功能相关性的基本问题,地形测量中的频率被逐步分解成大量窄带。使用带通滤波器和市售软件。这些波段可与传统的表面纹理参数(如平均粗糙度、Sa 或其他参数)一起分析,以获得详细的多尺度地形特征。早期的多尺度表征,如相对面积,需要专门的软件进行多个三角平铺练习。多尺度回归分析可以测试一系列尺度的功能相关性强度。在这里,摩擦系数与标准表面纹理参数在测量可用的尺度范围内进行回归。相关强度随带通滤波器的尺度而变化。使用带通频率(即波长或尺度)分解,Sa 在 25 μm 时的 R2 超过 0.9,而使用传统粗糙度滤波的更宽频带时,R2 仅为 0.2。这些改进的、针对特定尺度的功能相关性有助于科学地理解和规范产品和工艺设计以及质量保证体系设计中的形貌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Topography: Metrology and Properties
Surface Topography: Metrology and Properties Materials Science-Materials Chemistry
CiteScore
4.10
自引率
22.20%
发文量
183
期刊介绍: An international forum for academics, industrialists and engineers to publish the latest research in surface topography measurement and characterisation, instrumentation development and the properties of surfaces.
期刊最新文献
The microhardness, morphology and tribological property of TC4 subjected to machine hammer peening Surface profile inspection for large structures with laser scanning Evolution of tooth surface morphology and tribological properties of helical gears during mixed lubrication sliding wear Analysis of co-relation on LPBF process parameter on wear characteristics of Cu-Cr-Zr alloy Influence of titanium carbide particles on the characteristics of microarc oxidation layer on Ti6Al4V alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1