Zhanying Ma, Yang Liu, Wenhui Chen, Jiarui Yang, Lingjuan Deng, Caihua Zhou, Guang Fan, Yuxing Yang, Yangqing He
{"title":"Fabrication of ZnIn2S4/CeO2 S-scheme heterojuntion for the enhanced removal of tetracycline under visible light irradiation","authors":"Zhanying Ma, Yang Liu, Wenhui Chen, Jiarui Yang, Lingjuan Deng, Caihua Zhou, Guang Fan, Yuxing Yang, Yangqing He","doi":"10.1016/j.mtcomm.2024.110280","DOIUrl":null,"url":null,"abstract":"A series of S-scheme ZnInS/-CeO heterojunction were designed and fabricated through precipitation and hydrothermal method. XRD, SEM, TEM, EDX, XPS, UV–vis DRS and adsorption-photocatalytic techniques were employed to investigate its crystal phase structure, morphology, size, elemental composition, photo-response property and elimination ability for tetracycline. XRD analysis revealed CeO and ZnInS in ZnInS/-CeO sample presented cubic and hexagonal phase structure, respectively. SEM and TEM images indicated that CeO particles with irregular-shaped of around 20 nm were attached on the smooth surface of ZnInS microparticles with 4 μm. All the as-synthesized ZnInS/-CeO samples could harvest more visible-light and the absorption edges were red-shifted in comparison with pure CeO. ZnInS/0.3-CeO sample exhibited remarkably enhanced photocatalytic performance and its removal efficiency for tetracycline reached 87.29 % within 100 min. The detailed experimental and DFT calculation indicated that the enhanced photocatalytic property was mainly ascribed to the synergistic effect of wide light-response range, suitable band position and successful fabrication of S-scheme heterostructure, which was in favor of rapid transfer and available separation of photo-generated e/h pairs. The scavenger experiments and the ESR data revealed that the •O and h active species played the dominant role in tetracycline removal over ZnInS/0.3-CeO system. In addition, the as-synthesized ZnInS/0.3-CeO samples had excellent stability and the removal efficiency still reached 70.73 % after being repeatedly used for 4 times. Furthermore, the possible enhanced photocatalytic mechanism over ZnInS/-CeO was proposed to get a better understanding of photocatalytic process. This work provided the guidance to fabricate CeO-based heterojunction with promising prospect for the efficient elimination of antibiotic residues from wastewater.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"61 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110280","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of S-scheme ZnInS/-CeO heterojunction were designed and fabricated through precipitation and hydrothermal method. XRD, SEM, TEM, EDX, XPS, UV–vis DRS and adsorption-photocatalytic techniques were employed to investigate its crystal phase structure, morphology, size, elemental composition, photo-response property and elimination ability for tetracycline. XRD analysis revealed CeO and ZnInS in ZnInS/-CeO sample presented cubic and hexagonal phase structure, respectively. SEM and TEM images indicated that CeO particles with irregular-shaped of around 20 nm were attached on the smooth surface of ZnInS microparticles with 4 μm. All the as-synthesized ZnInS/-CeO samples could harvest more visible-light and the absorption edges were red-shifted in comparison with pure CeO. ZnInS/0.3-CeO sample exhibited remarkably enhanced photocatalytic performance and its removal efficiency for tetracycline reached 87.29 % within 100 min. The detailed experimental and DFT calculation indicated that the enhanced photocatalytic property was mainly ascribed to the synergistic effect of wide light-response range, suitable band position and successful fabrication of S-scheme heterostructure, which was in favor of rapid transfer and available separation of photo-generated e/h pairs. The scavenger experiments and the ESR data revealed that the •O and h active species played the dominant role in tetracycline removal over ZnInS/0.3-CeO system. In addition, the as-synthesized ZnInS/0.3-CeO samples had excellent stability and the removal efficiency still reached 70.73 % after being repeatedly used for 4 times. Furthermore, the possible enhanced photocatalytic mechanism over ZnInS/-CeO was proposed to get a better understanding of photocatalytic process. This work provided the guidance to fabricate CeO-based heterojunction with promising prospect for the efficient elimination of antibiotic residues from wastewater.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.