{"title":"Insights into effects of Fe doping on phase stability, martensitic transformation, and magnetic properties in Ni-Mn-Ti-Fe all-d-metal Heusler alloys","authors":"Jiaxin Xu, Jing Bai, Yu Zhang, Keliang Guo, Qingshuang Ma, Xinjun Jiang, Jianglong Gu, Qiuzhi Gao, Liang Zuo","doi":"10.1016/j.mtcomm.2024.110415","DOIUrl":null,"url":null,"abstract":"In this work, the effects of Fe doping on phase stability, martensitic transformation, and magnetic properties of NiMnTiFe ( = 3.125, 6.25, 9.375) all--metal Heusler alloys were systematically investigated by first-principles calculations. The results indicate a tendency for doped Fe atoms to aggregate within the NiMnTiFe alloys. As Fe concentration increases, a gradual reduction in both lattice constants and phase stability of austenite and martensite is observed. In the absence or presence of minimal Fe doping, both austenite and martensite exhibit antiferromagnetic behavior. However, at = 9.375, a transition to a ferromagnetic state is observed in the austenite phase. This transition is attributed to the activation of the ferromagnetic coupling effect in the austenite phase induced by Fe doping in the Ni-Mn-Ti alloy. In contrast, the martensite phase maintains its antiferromagnetic characteristics throughout the doping range. A comprehensive analysis of the electronic structure elucidates the underlying physical mechanisms responsible for the martensitic transformation and magnetic property changes.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"108 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110415","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the effects of Fe doping on phase stability, martensitic transformation, and magnetic properties of NiMnTiFe ( = 3.125, 6.25, 9.375) all--metal Heusler alloys were systematically investigated by first-principles calculations. The results indicate a tendency for doped Fe atoms to aggregate within the NiMnTiFe alloys. As Fe concentration increases, a gradual reduction in both lattice constants and phase stability of austenite and martensite is observed. In the absence or presence of minimal Fe doping, both austenite and martensite exhibit antiferromagnetic behavior. However, at = 9.375, a transition to a ferromagnetic state is observed in the austenite phase. This transition is attributed to the activation of the ferromagnetic coupling effect in the austenite phase induced by Fe doping in the Ni-Mn-Ti alloy. In contrast, the martensite phase maintains its antiferromagnetic characteristics throughout the doping range. A comprehensive analysis of the electronic structure elucidates the underlying physical mechanisms responsible for the martensitic transformation and magnetic property changes.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.