{"title":"Energy-Efficient Hydrogen Liquefaction Process with Ortho-Para Conversion and Boil-Off Gas Recovery","authors":"Prof. Jian Wen, Haolin Xie, Xin Zhao, Ke Li","doi":"10.1002/ceat.202400150","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen liquefaction is essential for the efficient storage and transportation of hydrogen. In the liquefaction process, catalytic ortho-para conversion is crucial to achieve a product with at least 95 % para-hydrogen to reduce boil-off losses. The proposed hydrogen liquefaction process using a catalyst-filled heat exchanger for continuous ortho-para conversion is modeled through steady-state thermal simulations in Aspen HYSYS. Additionally, an ejector is integrated to reliquefy boil-off gas. The proposed design achieves a specific energy consumption (SEC) of 10.50 kWh (<span></span><math></math>)<sup>−1</sup> and an exergy efficiency (EXE) of 30.1 %, which is 18 % lower in SEC compared to processes with separate converters. The integrated approach enhances energy utilization and offers references for future hydrogen liquefiers.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen liquefaction is essential for the efficient storage and transportation of hydrogen. In the liquefaction process, catalytic ortho-para conversion is crucial to achieve a product with at least 95 % para-hydrogen to reduce boil-off losses. The proposed hydrogen liquefaction process using a catalyst-filled heat exchanger for continuous ortho-para conversion is modeled through steady-state thermal simulations in Aspen HYSYS. Additionally, an ejector is integrated to reliquefy boil-off gas. The proposed design achieves a specific energy consumption (SEC) of 10.50 kWh ()−1 and an exergy efficiency (EXE) of 30.1 %, which is 18 % lower in SEC compared to processes with separate converters. The integrated approach enhances energy utilization and offers references for future hydrogen liquefiers.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.