Controlling Calcium Oxalate Crystal Growth Using Pectin and Sodium Alginate Natural Polymers

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-08-14 DOI:10.1002/ceat.202300459
Ahmed AL-Dubai, Dr. Emel Akyol
{"title":"Controlling Calcium Oxalate Crystal Growth Using Pectin and Sodium Alginate Natural Polymers","authors":"Ahmed AL-Dubai,&nbsp;Dr. Emel Akyol","doi":"10.1002/ceat.202300459","DOIUrl":null,"url":null,"abstract":"<p>Calcium oxalate (CaOx) crystallization is a common phenomenon that contributes to various kidney disorders and stone formation, as well as the formation of scale in industrial processes. The inhibition of CaOx is an area of intense scientific interest in the field of materials science due to its relevance to biomineralization. The present study investigated the effects of pectin (PE) and sodium alginate (SA), two natural polymers, on the growth of CaOx crystals using a batch crystallization method in aqueous solutions at 37 °C with different concentrations (0.5, 1, 5, and 10 ppm). The results of the study showed that both PE and SA were effective inhibitors of CaOx crystal growth, with the highest inhibition observed at a concentration of 10 ppm, reaching 80 %. PE did not significantly affect the size of the crystals, while SA reduced their size as the concentration increased. These findings contribute to our understanding of the potential of natural polymers as non-toxic inhibitors of CaOx crystal growth.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300459","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium oxalate (CaOx) crystallization is a common phenomenon that contributes to various kidney disorders and stone formation, as well as the formation of scale in industrial processes. The inhibition of CaOx is an area of intense scientific interest in the field of materials science due to its relevance to biomineralization. The present study investigated the effects of pectin (PE) and sodium alginate (SA), two natural polymers, on the growth of CaOx crystals using a batch crystallization method in aqueous solutions at 37 °C with different concentrations (0.5, 1, 5, and 10 ppm). The results of the study showed that both PE and SA were effective inhibitors of CaOx crystal growth, with the highest inhibition observed at a concentration of 10 ppm, reaching 80 %. PE did not significantly affect the size of the crystals, while SA reduced their size as the concentration increased. These findings contribute to our understanding of the potential of natural polymers as non-toxic inhibitors of CaOx crystal growth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用果胶和海藻酸钠天然聚合物控制草酸钙晶体生长
草酸钙(CaOx)结晶是一种常见现象,会导致各种肾脏疾病和结石的形成,以及工业生产过程中水垢的形成。由于 CaOx 与生物矿化的相关性,抑制 CaOx 是材料科学领域备受关注的一个科学领域。本研究采用批量结晶法,在 37 °C、不同浓度(0.5、1、5 和 10 ppm)的水溶液中研究了果胶(PE)和海藻酸钠(SA)这两种天然聚合物对 CaOx 晶体生长的影响。研究结果表明,PE 和 SA 都能有效抑制 CaOx 晶体的生长,其中浓度为 10 ppm 时的抑制率最高,达到 80%。PE 对晶体的大小没有明显影响,而 SA 则会随着浓度的增加而减小晶体的大小。这些发现有助于我们了解天然聚合物作为氧化钙晶体生长无毒抑制剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1