{"title":"Study on the Scale and Corrosion Inhibition Effect of Curcumin-Based Novel Polymers","authors":"Jinwei Qi, Jihui Li, Kaili Liu, Huixin Zhang, Jian Han, Jianxin Chen","doi":"10.1002/ceat.202400203","DOIUrl":null,"url":null,"abstract":"<p>The curcumin-malic acid-aspartic acid polymer (PCMA) as a new water treatment agent was prepared by solid phase synthesis of curcumin, malic acid and aspartic acid. The static scale inhibition experiments showed that PCMA can inhibit CaCO<sub>3</sub> and CaSO<sub>4</sub> scale formation by 100.0 % and had excellent scale inhibition effect under various experimental conditions. The mechanism of action of PCMA was obtained by X-ray diffraction, scanning electron microscope and molecular dynamics simulation. Electrochemical test showed that PCMA is an anodic corrosion inhibitor that achieves 93.1 % corrosion inhibition by forming a protective film on the surface of Q235 carbon steel. Besides, fluorescence spectra proved that PCMA has stable fluorescence intensity.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The curcumin-malic acid-aspartic acid polymer (PCMA) as a new water treatment agent was prepared by solid phase synthesis of curcumin, malic acid and aspartic acid. The static scale inhibition experiments showed that PCMA can inhibit CaCO3 and CaSO4 scale formation by 100.0 % and had excellent scale inhibition effect under various experimental conditions. The mechanism of action of PCMA was obtained by X-ray diffraction, scanning electron microscope and molecular dynamics simulation. Electrochemical test showed that PCMA is an anodic corrosion inhibitor that achieves 93.1 % corrosion inhibition by forming a protective film on the surface of Q235 carbon steel. Besides, fluorescence spectra proved that PCMA has stable fluorescence intensity.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.