An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting

Zhuolin Li, Zhen Zhang, Witold Pedrycz
{"title":"An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting","authors":"Zhuolin Li, Zhen Zhang, Witold Pedrycz","doi":"arxiv-2409.02760","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel incremental preference elicitation-based\napproach to learning potentially non-monotonic preferences in multi-criteria\nsorting (MCS) problems, enabling decision makers to progressively provide\nassignment example preference information. Specifically, we first construct a\nmax-margin optimization-based model to model potentially non-monotonic\npreferences and inconsistent assignment example preference information in each\niteration of the incremental preference elicitation process. Using the optimal\nobjective function value of the max-margin optimization-based model, we devise\ninformation amount measurement methods and question selection strategies to\npinpoint the most informative alternative in each iteration within the\nframework of uncertainty sampling in active learning. Once the termination\ncriterion is satisfied, the sorting result for non-reference alternatives can\nbe determined through the use of two optimization models, i.e., the max-margin\noptimization-based model and the complexity controlling optimization model.\nSubsequently, two incremental preference elicitation-based algorithms are\ndeveloped to learn potentially non-monotonic preferences, considering different\ntermination criteria. Ultimately, we apply the proposed approach to a credit\nrating problem to elucidate the detailed implementation steps, and perform\ncomputational experiments on both artificial and real-world data sets to\ncompare the proposed question selection strategies with several benchmark\nstrategies.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting (MCS) problems, enabling decision makers to progressively provide assignment example preference information. Specifically, we first construct a max-margin optimization-based model to model potentially non-monotonic preferences and inconsistent assignment example preference information in each iteration of the incremental preference elicitation process. Using the optimal objective function value of the max-margin optimization-based model, we devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration within the framework of uncertainty sampling in active learning. Once the termination criterion is satisfied, the sorting result for non-reference alternatives can be determined through the use of two optimization models, i.e., the max-margin optimization-based model and the complexity controlling optimization model. Subsequently, two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences, considering different termination criteria. Ultimately, we apply the proposed approach to a credit rating problem to elucidate the detailed implementation steps, and perform computational experiments on both artificial and real-world data sets to compare the proposed question selection strategies with several benchmark strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多标准排序中学习潜在非单调偏好的基于偏好激发的增量方法
本文介绍了一种新颖的基于增量偏好激发的方法,用于学习多标准排序(MCS)问题中的潜在非单调偏好,使决策者能够逐步提供分配示例偏好信息。具体来说,我们首先构建了一个基于最大边际优化的模型,以模拟增量偏好诱导过程中每次迭代中的潜在非单调偏好和不一致的分配示例偏好信息。利用基于最大边际优化模型的最优目标函数值,我们设计了信息量测量方法和问题选择策略,在主动学习的不确定性抽样框架内,在每次迭代中找出信息量最大的备选方案。一旦满足了终止标准,就可以通过使用两个优化模型(即基于最大边际优化的模型和复杂度控制优化模型)来确定非参考备选方案的排序结果。随后,考虑到不同的终止标准,我们开发了两种基于增量偏好激发的算法来学习潜在的非单调偏好。最后,我们将提出的方法应用于一个信用评级问题,以阐明详细的实施步骤,并在人工数据集和真实世界数据集上进行计算实验,将提出的问题选择策略与几种基准策略进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1