A Sequential Decision-Making Model for Perimeter Identification

Ayal Taitler
{"title":"A Sequential Decision-Making Model for Perimeter Identification","authors":"Ayal Taitler","doi":"arxiv-2409.02549","DOIUrl":null,"url":null,"abstract":"Perimeter identification involves ascertaining the boundaries of a designated\narea or zone, requiring traffic flow monitoring, control, or optimization.\nVarious methodologies and technologies exist for accurately defining these\nperimeters; however, they often necessitate specialized equipment, precise\nmapping, or comprehensive data for effective problem delineation. In this\nstudy, we propose a sequential decision-making framework for perimeter search,\ndesigned to operate efficiently in real-time and require only publicly\naccessible information. We conceptualize the perimeter search as a game between\na playing agent and an artificial environment, where the agent's objective is\nto identify the optimal perimeter by sequentially improving the current\nperimeter. We detail the model for the game and discuss its adaptability in\ndetermining the definition of an optimal perimeter. Ultimately, we showcase the\nmodel's efficacy through a real-world scenario, highlighting the identification\nof corresponding optimal perimeters.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perimeter identification involves ascertaining the boundaries of a designated area or zone, requiring traffic flow monitoring, control, or optimization. Various methodologies and technologies exist for accurately defining these perimeters; however, they often necessitate specialized equipment, precise mapping, or comprehensive data for effective problem delineation. In this study, we propose a sequential decision-making framework for perimeter search, designed to operate efficiently in real-time and require only publicly accessible information. We conceptualize the perimeter search as a game between a playing agent and an artificial environment, where the agent's objective is to identify the optimal perimeter by sequentially improving the current perimeter. We detail the model for the game and discuss its adaptability in determining the definition of an optimal perimeter. Ultimately, we showcase the model's efficacy through a real-world scenario, highlighting the identification of corresponding optimal perimeters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
周界识别的顺序决策模型
周界识别涉及确定指定区域或区域的边界,需要对交通流进行监测、控制或优化。目前有各种方法和技术可用于准确定义这些周界;但它们通常需要专业设备、精确绘图或全面数据才能有效地划定问题。在本研究中,我们提出了一种用于周界搜索的顺序决策框架,旨在实时高效地运行,并且只需要公开可获取的信息。我们将周界搜索概念化为游戏代理与人工环境之间的博弈,其中代理的目标是通过依次改进当前周界来确定最佳周界。我们详细介绍了博弈模型,并讨论了该模型在确定最佳周长定义时的适应性。最后,我们通过一个真实世界的场景展示了该模型的功效,并强调了相应最优周长的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1