Recipe for Simultaneously Achieving Customizable Sound Absorption and Mechanical Properties in Lattice Structures

Xinwei Li, Shuwei Ding, Xinxin Wang, Seng Leong Adrian Tan, Wei Zhai
{"title":"Recipe for Simultaneously Achieving Customizable Sound Absorption and Mechanical Properties in Lattice Structures","authors":"Xinwei Li, Shuwei Ding, Xinxin Wang, Seng Leong Adrian Tan, Wei Zhai","doi":"10.1002/admt.202400517","DOIUrl":null,"url":null,"abstract":"Lattice structures with customizable acoustical and mechanical properties show significant promise as practical engineering materials. However, the geometry of traditional lattice structures simultaneously dictates both acoustical and mechanical properties, with alterations in one impacting the other, leaving little room for customization. Herein, leveraging the mechanism of Helmholtz resonators, a general recipe is presented to independently introduce sound absorption and mechanical properties in lattice structures. The sound absorption component is based on a perforated plate, while the mechanical component is based on a truss structure. Through a high‐fidelity analytical acoustics model is developed, and finite element analysis outlines the range of properties achievable through the proposed structures. The design encompasses structures with effective absorption, characterized by a resonance peak with coefficient ≥0.7, across almost every frequency in a broad range from 1000 to 5000 Hz, within a range of lattice thicknesses from 21 to 25.5 mm. Also, diverse range of stiffness and strength, and large‐strain deformation modes, can be achieved through the implementation of different trusses. Finally, the concept is validated experimentally through 3D‐printed samples. This innovative approach allows for the tailored creation of lattice structures that specifically address the acoustical and mechanical requirements in diverse applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice structures with customizable acoustical and mechanical properties show significant promise as practical engineering materials. However, the geometry of traditional lattice structures simultaneously dictates both acoustical and mechanical properties, with alterations in one impacting the other, leaving little room for customization. Herein, leveraging the mechanism of Helmholtz resonators, a general recipe is presented to independently introduce sound absorption and mechanical properties in lattice structures. The sound absorption component is based on a perforated plate, while the mechanical component is based on a truss structure. Through a high‐fidelity analytical acoustics model is developed, and finite element analysis outlines the range of properties achievable through the proposed structures. The design encompasses structures with effective absorption, characterized by a resonance peak with coefficient ≥0.7, across almost every frequency in a broad range from 1000 to 5000 Hz, within a range of lattice thicknesses from 21 to 25.5 mm. Also, diverse range of stiffness and strength, and large‐strain deformation modes, can be achieved through the implementation of different trusses. Finally, the concept is validated experimentally through 3D‐printed samples. This innovative approach allows for the tailored creation of lattice structures that specifically address the acoustical and mechanical requirements in diverse applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在晶格结构中同时实现可定制吸音和机械特性的方法
具有可定制声学和机械特性的晶格结构有望成为实用的工程材料。然而,传统晶格结构的几何形状同时决定了声学和机械特性,其中一个特性的改变会影响另一个特性,因此定制空间很小。本文利用亥姆霍兹谐振器的机制,提出了一种在晶格结构中独立引入吸声和机械特性的通用方法。吸声部分以穿孔板为基础,而机械部分则以桁架结构为基础。通过开发高保真分析声学模型和有限元分析,概述了拟议结构可实现的性能范围。设计包括具有有效吸声的结构,其特点是共振峰值系数≥0.7,频率范围从 1000 赫兹到 5000 赫兹,晶格厚度范围从 21 毫米到 25.5 毫米。此外,通过采用不同的桁架,还可实现不同的刚度和强度范围以及大应变变形模式。最后,通过三维打印样品对这一概念进行了实验验证。这种创新方法可以量身定制晶格结构,专门满足不同应用中的声学和机械要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1