首页 > 最新文献

Advanced Materials & Technologies最新文献

英文 中文
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance 等离子发光涂层:热敏性和耐腐蚀性方面的创新
Pub Date : 2024-09-20 DOI: 10.1002/admt.202401136
Ziyao Wang, Baochen Wang, Xinyao Yang, Hui Li, Ruiyu Mi, Yangai Liu
The strategic design of traditional coating materials has long been pivotal in broadening their range of applications. In this work, europium-doped TiO2 coatings are grown in situ on the surface of titanium substrate using plasma electrolytic oxidation technology. The core reaction took no more than five minutes. Incorporating europium into the coating preserved the inherent corrosion resistance of PEO coatings while imparting anticipated thermal-sensitive luminescence capabilities. The intrinsic emission of TiO2 and the characteristic emission of Eu3+ (5D07F2) are employed as the self-reference for the LIR thermometry. The absolute and relative temperature sensitivity of the coating reached 0.0087 K−1 and 0.739% K−1, respectively. Notably, the coating exhibited a signal discriminability of up to 5100 cm−1 and a temperature uncertainty of only 0.18 K, which is comparable to some TiO2: Eu nanoparticles. The ingenious fusion of corrosion resistance and thermal-sensitive luminescence of the coating not only makes it a classic protective structure but also facilitates its applicability to diverse scenarios, including optical thermometry in extreme environments.
长期以来,对传统涂层材料进行战略性设计对于拓宽其应用范围至关重要。在这项工作中,利用等离子电解氧化技术在钛基底表面原位生长出掺铕的二氧化钛涂层。核心反应不超过五分钟。在涂层中掺入铕,既保留了 PEO 涂层固有的耐腐蚀性,又赋予了预期的热敏发光能力。TiO2 的固有发射和 Eu3+ 的特征发射(5D0 → 7F2)被用作 LIR 温度测量的自我参照。涂层的绝对温度灵敏度和相对温度灵敏度分别达到 0.0087 K-1 和 0.739% K-1。值得注意的是,涂层的信号可分辨性高达 5100 cm-1,温度不确定性仅为 0.18 K,与某些 TiO2:Eu 纳米粒子相当。该涂层巧妙地将耐腐蚀性和热敏发光性融合在一起,不仅使其成为一种经典的保护结构,还使其适用于各种应用场合,包括极端环境中的光学测温。
{"title":"Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance","authors":"Ziyao Wang, Baochen Wang, Xinyao Yang, Hui Li, Ruiyu Mi, Yangai Liu","doi":"10.1002/admt.202401136","DOIUrl":"https://doi.org/10.1002/admt.202401136","url":null,"abstract":"The strategic design of traditional coating materials has long been pivotal in broadening their range of applications. In this work, europium-doped TiO<sub>2</sub> coatings are grown in situ on the surface of titanium substrate using plasma electrolytic oxidation technology. The core reaction took no more than five minutes. Incorporating europium into the coating preserved the inherent corrosion resistance of PEO coatings while imparting anticipated thermal-sensitive luminescence capabilities. The intrinsic emission of TiO<sub>2</sub> and the characteristic emission of Eu<sup>3+</sup> (<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>) are employed as the self-reference for the LIR thermometry. The absolute and relative temperature sensitivity of the coating reached 0.0087 K<sup>−1</sup> and 0.739% K<sup>−1</sup>, respectively. Notably, the coating exhibited a signal discriminability of up to 5100 cm<sup>−1</sup> and a temperature uncertainty of only 0.18 K, which is comparable to some TiO<sub>2</sub>: Eu nanoparticles. The ingenious fusion of corrosion resistance and thermal-sensitive luminescence of the coating not only makes it a classic protective structure but also facilitates its applicability to diverse scenarios, including optical thermometry in extreme environments.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle 用于无人潜航器实时运动感应的深度学习辅助三电须传感器阵列
Pub Date : 2024-09-20 DOI: 10.1002/admt.202401053
Bo Liu, Bowen Dong, Hao Jin, Peng Zhu, Zhaoyang Mu, Yuanzheng Li, Jianhua Liu, Zhaochen Meng, Xinyue Zhou, Peng Xu, Minyi Xu
Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning-assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near-field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal-to-noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA-based assisted perception holds immense potential for enhancing unmanned underwater vehicle near-field perception and navigation capabilities across a wide range of applications.
水生动物可以通过高度进化的感官系统感知周围的流场。例如,海豹胡须阵列能够理解水动力场,从而使海豹能够在黑暗环境中觅食和导航。在这项工作中,设计了一种深度学习辅助的水下三电须传感器阵列(TWSA),用于无人驾驶水下航行器的三维运动估计和近场感知。每个传感器由一个高纵横比椭圆晶须轴、位于椭圆晶须轴根部的四个传感单元和一个模拟水生动物颊面皮肤的柔性波纹接头组成。TWSA 能有效识别三维水下环境中的流速和流向,其响应时间为 19 毫秒,灵敏度高达 0.2V/ms-1,信噪比为 58 分贝。该装置还能锁定上游漩涡的频率,最低检测精度可达 81.2%。此外,当与无人驾驶水下航行器集成时,TWSA 可在训练有素的深度学习模型辅助下估计三维轨迹,均方根误差≈0.02。因此,基于 TWSA 的辅助感知技术在增强无人潜航器的近场感知和导航能力方面具有广泛应用的巨大潜力。
{"title":"Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle","authors":"Bo Liu, Bowen Dong, Hao Jin, Peng Zhu, Zhaoyang Mu, Yuanzheng Li, Jianhua Liu, Zhaochen Meng, Xinyue Zhou, Peng Xu, Minyi Xu","doi":"10.1002/admt.202401053","DOIUrl":"https://doi.org/10.1002/admt.202401053","url":null,"abstract":"Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning-assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near-field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2<i>V</i>/<i>ms</i><sup>−1</sup>, and a signal-to-noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA-based assisted perception holds immense potential for enhancing unmanned underwater vehicle near-field perception and navigation capabilities across a wide range of applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Lasting Simultaneous Epidermal and Dermal Microneedle-Enabled Drug Delivery 表皮和真皮微针同时长效给药
Pub Date : 2024-09-19 DOI: 10.1002/admt.202400980
Misagh Rezapour Sarabi, Sara Soltanabadi Farshi, Zeynep Saltik, Saba Khosbakht, Nesimi Buyukbabani, Orhan Agcaoglu, Secil Vural, Metin Sitti, Savas Tasoglu
Different skin diseases, such as cancers, inflammatory conditions, and bacterial infections, manifest at distinct skin depths. Microneedle arrays, recognized for their painless and minimally invasive drug administration, can be customized to penetrate these layers simultaneously. Here, the design of the microneedles (MNs) in nonlinear ways with diverse needle heights on the array enabling concurrent drug delivery to various skin layers is engineered. Additionally, varying the base diameter of the needles in the array facilitates prolonged or intermittent drug release, depending on the biodegradation kinetics of these needles. MNs, microfabricated with a biocompatible and biodegradable polymer, are validated by skin administration. The nonlinear design of the MNs on the array introduces a novel perspective on addressing skin diseases at varying depths of the skin.
不同的皮肤疾病,如癌症、炎症和细菌感染,在皮肤的不同深度都有表现。微针阵列因其无痛、微创的给药方式而闻名,可根据需要同时穿透这些层。在这里,我们设计了非线性微针(MNs),阵列上的微针高度各不相同,可同时向不同皮肤层给药。此外,根据针头的生物降解动力学,改变阵列中针头的基底直径可延长或间断释放药物。使用生物相容性和可生物降解聚合物微制造的 MN 通过皮肤给药进行了验证。阵列上 MN 的非线性设计为解决皮肤不同深度的皮肤疾病提供了一个新的视角。
{"title":"Long-Lasting Simultaneous Epidermal and Dermal Microneedle-Enabled Drug Delivery","authors":"Misagh Rezapour Sarabi, Sara Soltanabadi Farshi, Zeynep Saltik, Saba Khosbakht, Nesimi Buyukbabani, Orhan Agcaoglu, Secil Vural, Metin Sitti, Savas Tasoglu","doi":"10.1002/admt.202400980","DOIUrl":"https://doi.org/10.1002/admt.202400980","url":null,"abstract":"Different skin diseases, such as cancers, inflammatory conditions, and bacterial infections, manifest at distinct skin depths. Microneedle arrays, recognized for their painless and minimally invasive drug administration, can be customized to penetrate these layers simultaneously. Here, the design of the microneedles (MNs) in nonlinear ways with diverse needle heights on the array enabling concurrent drug delivery to various skin layers is engineered. Additionally, varying the base diameter of the needles in the array facilitates prolonged or intermittent drug release, depending on the biodegradation kinetics of these needles. MNs, microfabricated with a biocompatible and biodegradable polymer, are validated by skin administration. The nonlinear design of the MNs on the array introduces a novel perspective on addressing skin diseases at varying depths of the skin.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System 面向多色视觉系统的动物视觉色彩检测锐度光谱分析
Pub Date : 2024-09-19 DOI: 10.1002/admt.202400671
Suyeon Lee, Hyochul Kim, Goohwan Kim, Hyungbin Son, Un Jeong Kim
Spectral discrimination by animal visions such as human, bird, and butterfly is numerically compared by angular analysis of photo-response (PR) which will be recorded at photo-receptors. Hyperspectral imaging system is utilized to simulate various animal vision. Bird vision is acute to discriminate colors among different vegetables due to its evenly spaced and narrow spectral responsivity of photo-receptors compared to that of human. Butterfly vision is excellent in discriminating red tomato ripening due to the exclusive photo-receptors detecting only over 600 nm. Even real and fake fruits in the same perceived color for human is discriminated by bird vision. Artificial vision with finely resolved polychromatic artificial cone cells are demonstrated surpassing human vision using visible multispectral camera. This provides insights on designing novel bio-inspired vision system.
通过对光敏感受器记录的光反应(PR)进行角度分析,对人类、鸟类和蝴蝶等动物视觉的光谱分辨能力进行数值比较。利用高光谱成像系统模拟各种动物的视觉。与人类的视觉相比,鸟类的光感受器均匀分布,光谱响应度较窄,因此鸟类的视觉能够敏锐地分辨不同蔬菜的颜色。蝴蝶的视觉能很好地辨别红色西红柿的成熟度,这是因为蝴蝶独有的光感受器只能探测到 600 纳米以上的波长。即使是人类感知颜色相同的真假水果,鸟类视觉也能分辨出来。通过使用可见光多光谱相机,利用精细分辨的多色人工锥状细胞进行的人工视觉演示超越了人类视觉。这为设计新型生物启发视觉系统提供了启示。
{"title":"Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System","authors":"Suyeon Lee, Hyochul Kim, Goohwan Kim, Hyungbin Son, Un Jeong Kim","doi":"10.1002/admt.202400671","DOIUrl":"https://doi.org/10.1002/admt.202400671","url":null,"abstract":"Spectral discrimination by animal visions such as human, bird, and butterfly is numerically compared by angular analysis of photo-response (<i>PR</i>) which will be recorded at photo-receptors. Hyperspectral imaging system is utilized to simulate various animal vision. Bird vision is acute to discriminate colors among different vegetables due to its evenly spaced and narrow spectral responsivity of photo-receptors compared to that of human. Butterfly vision is excellent in discriminating red tomato ripening due to the exclusive photo-receptors detecting only over 600 nm. Even real and fake fruits in the same perceived color for human is discriminated by bird vision. Artificial vision with finely resolved polychromatic artificial cone cells are demonstrated surpassing human vision using visible multispectral camera. This provides insights on designing novel bio-inspired vision system.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells 通过多棒涂层技术将碳氢化合物基离子聚合物/聚四氟乙烯增强复合膜用于耐用燃料电池
Pub Date : 2024-09-19 DOI: 10.1002/admt.202400669
Sanghyeok Lee, Taejun Sul, Unsoo Kim, Sohee Kim, Ji Eon Chae, Junsoo Kim, Sang Moon Kim, Segeun Jang, Sanghyeok Lee
For cost reduction and environmental-friendly manufacturing, it is highly demanded to replace the current perfluorinated sulfonic acid-based membrane in polymer electrolyte membrane fuel cells (PEMFCs) with inexpensive and readily available hydrocarbon-based (HC) membranes. However, HC membranes suffer from profound dimensional changes caused by swelling and shrinking during operation, especially in automotive applications. These changes lead to severe mechanical degradation and shorten the service life of PEMFC. Herein, a multibar coating system is developed to manufacture HC/polytetrafluoroethylene (PTFE) composite membrane. This system facilitates capillary-rise infiltration with the aid of an optimal amount of residual alcohol solvent on the PTFE. To address compatibility issues between PTFE and HC-ionomer solutions, the effects of residual alcohol solvent on tuning the PTFE surface are investigated by controlling systemic parameters and performing diverse mechanical, optical, and electrochemical measurements. Based on its enhanced mechanical toughness (≈30.04%) and superior impregnation properties, the constructed HC/PTFE composite membrane exhibited more than seven-fold improvement in mechanical durability under repeated accelerated wet–dry conditions compared with an unsupported pristine HC membrane while also mitigating performance loss (≈5.84%).
为了降低成本和实现环保生产,人们强烈要求在聚合物电解质膜燃料电池(PEMFCs)中用廉价易得的碳氢化合物(HC)膜取代目前的全氟磺酸基膜。然而,碳氢化合物膜在运行过程中,尤其是在汽车应用中,会因膨胀和收缩而产生严重的尺寸变化。这些变化会导致严重的机械退化,缩短 PEMFC 的使用寿命。在此,我们开发了一种多棒涂层系统,用于制造碳氢化合物/聚四氟乙烯(PTFE)复合膜。借助 PTFE 上的最佳残留酒精溶剂量,该系统可促进毛细管上升渗透。为了解决聚四氟乙烯与 HC 离子溶液之间的兼容性问题,我们通过控制系统参数和进行各种机械、光学和电化学测量,研究了残留酒精溶剂对聚四氟乙烯表面的调节作用。基于其增强的机械韧性(≈30.04%)和卓越的浸渍特性,与无支撑的原始碳氢化合物膜相比,所构建的碳氢化合物/聚四氟乙烯复合膜在反复加速干湿条件下的机械耐久性提高了七倍多,同时还减少了性能损失(≈5.84%)。
{"title":"Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells","authors":"Sanghyeok Lee, Taejun Sul, Unsoo Kim, Sohee Kim, Ji Eon Chae, Junsoo Kim, Sang Moon Kim, Segeun Jang, Sanghyeok Lee","doi":"10.1002/admt.202400669","DOIUrl":"https://doi.org/10.1002/admt.202400669","url":null,"abstract":"For cost reduction and environmental-friendly manufacturing, it is highly demanded to replace the current perfluorinated sulfonic acid-based membrane in polymer electrolyte membrane fuel cells (PEMFCs) with inexpensive and readily available hydrocarbon-based (HC) membranes. However, HC membranes suffer from profound dimensional changes caused by swelling and shrinking during operation, especially in automotive applications. These changes lead to severe mechanical degradation and shorten the service life of PEMFC. Herein, a multibar coating system is developed to manufacture HC/polytetrafluoroethylene (PTFE) composite membrane. This system facilitates capillary-rise infiltration with the aid of an optimal amount of residual alcohol solvent on the PTFE. To address compatibility issues between PTFE and HC-ionomer solutions, the effects of residual alcohol solvent on tuning the PTFE surface are investigated by controlling systemic parameters and performing diverse mechanical, optical, and electrochemical measurements. Based on its enhanced mechanical toughness (≈30.04%) and superior impregnation properties, the constructed HC/PTFE composite membrane exhibited more than seven-fold improvement in mechanical durability under repeated accelerated wet–dry conditions compared with an unsupported pristine HC membrane while also mitigating performance loss (≈5.84%).","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems 用于水库计算系统的蒸发铜基 Perovskite 动态晶闸管
Pub Date : 2024-09-19 DOI: 10.1002/admt.202400838
Ruiheng Wang, He Shao, Jianyu Ming, Wei Yang, Jintao Sun, Benxin Liu, Siqi Wu, Haifeng Ling
Dynamic memristors are considered as the optimal hardware devices for reservoir computing (RC) enabled by their nonlinear conductance variations. This significantly reduces the extensive training workload typically required by traditional neural networks. Lead halide perovskites, with their tunable band structure and active ion migration properties, have emerged as highly promising materials for developing dynamic memristors. However, large-scale and consistently stable production remains a challenge for perovskite functional films, while lead elements' toxicity and environmental impact also partly restrict their practical device utilization. In this work, lead-free copper-based perovskite (i.e., CsCu2I3) films are prepared by thermal evaporation for constructing dynamic memristors. The effective conductivity modulation of CsCu2I3-based memristor can be utilized in artificial neural networks, achieving a high handwritten digit recognition accuracy of 91.2%. In addition, the RC system is also constructed based on the dynamic behavior of the devices, by which a letter recognition accuracy of 98.2% with simple training is achieved. This technology provides a feasible pathway to construct copper-based perovskite dynamic memristors for future neural network information processing.
动态忆阻器因其非线性电导变化而被视为水库计算(RC)的最佳硬件设备。这大大减少了传统神经网络通常需要的大量训练工作量。卤化铅包晶石具有可调带状结构和活性离子迁移特性,已成为开发动态忆阻器的极有前途的材料。然而,大规模和持续稳定的生产仍然是包晶功能薄膜所面临的挑战,而铅元素的毒性和对环境的影响也在一定程度上限制了它们在实际器件中的应用。本研究通过热蒸发法制备了无铅铜基透辉石(即 CsCu2I3)薄膜,用于构建动态忆阻器。基于 CsCu2I3 的忆阻器的有效电导率调制可用于人工神经网络,实现高达 91.2% 的手写数字识别准确率。此外,还根据器件的动态行为构建了 RC 系统,通过简单的训练实现了 98.2% 的字母识别准确率。这项技术为构建铜基过氧化物动态忆阻器提供了一条可行的途径,可用于未来的神经网络信息处理。
{"title":"Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems","authors":"Ruiheng Wang, He Shao, Jianyu Ming, Wei Yang, Jintao Sun, Benxin Liu, Siqi Wu, Haifeng Ling","doi":"10.1002/admt.202400838","DOIUrl":"https://doi.org/10.1002/admt.202400838","url":null,"abstract":"Dynamic memristors are considered as the optimal hardware devices for reservoir computing (RC) enabled by their nonlinear conductance variations. This significantly reduces the extensive training workload typically required by traditional neural networks. Lead halide perovskites, with their tunable band structure and active ion migration properties, have emerged as highly promising materials for developing dynamic memristors. However, large-scale and consistently stable production remains a challenge for perovskite functional films, while lead elements' toxicity and environmental impact also partly restrict their practical device utilization. In this work, lead-free copper-based perovskite (i.e., CsCu<sub>2</sub>I<sub>3</sub>) films are prepared by thermal evaporation for constructing dynamic memristors. The effective conductivity modulation of CsCu<sub>2</sub>I<sub>3</sub>-based memristor can be utilized in artificial neural networks, achieving a high handwritten digit recognition accuracy of 91.2%. In addition, the RC system is also constructed based on the dynamic behavior of the devices, by which a letter recognition accuracy of 98.2% with simple training is achieved. This technology provides a feasible pathway to construct copper-based perovskite dynamic memristors for future neural network information processing.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Subtractive Method to Chemically Pattern Liquid Metal for Stretchable Circuits 为可拉伸电路绘制液态金属化学图案的减法方法
Pub Date : 2024-09-18 DOI: 10.1002/admt.202401200
Kaushal Sumaria, Tingyi “Leo” Liu
Advancements in biomedical research have spurred the development of stretchable electronic devices. While soft insulators are readily available, soft conductors with metal‐like electrical conductivity are rare. Gallium and its alloys, being nontoxic and intrinsically stretchable, are potentially ideal solutions. However, current additive liquid metal (LM) patterning methods face limitations in achieving high‐throughput, high‐resolution, and high‐density LM wiring. Here, a subtractive LM patterning method is developed to meet all these requirements simultaneously. The innovative method involves parallel filling a single continuous microfluidic mesh network with LM that short‐circuits all the pins and pads of a circuit, followed by parallel cutting of the unwanted short‐circuited interconnections using hydrochloric acid (HCl) vapor. Cutting locations are pre‐defined by designing narrower intersecting channels, leveraging capillary force for precise filling and cutting. The process is characterized using a multidimensional parametric study with varying LM line widths and HCl concentrations, and in situ impedance measurements to assess insulation performance. To showcase its high‐throughput capabilities, a mock circuit is used to successfully generate complex LM interconnects that connected hundreds of electrical pads. Finally, a stretchable LM circuit with a micro‐LED array is fabricated to demonstrate the practical application of this technology for massively parallel wiring in stretchable electronics.
生物医学研究的进步推动了可拉伸电子设备的发展。虽然软绝缘体很容易获得,但具有类似金属导电性的软导体却很少见。镓及其合金无毒且具有内在可拉伸性,是潜在的理想解决方案。然而,目前的添加型液态金属(LM)图案制作方法在实现高通量、高分辨率和高密度 LM 布线方面存在局限性。在此,我们开发了一种减法液态金属图案化方法,可同时满足所有这些要求。这种创新方法是在单个连续微流体网状网络中并行填充 LM,使电路的所有引脚和焊盘短路,然后使用盐酸 (HCl) 蒸汽并行切割不需要的短路互连。切割位置是通过设计较窄的相交通道预先确定的,利用毛细力进行精确填充和切割。该工艺采用多维参数研究(LM 线宽和盐酸浓度各不相同)和现场阻抗测量来评估绝缘性能。为了展示其高通量能力,使用模拟电路成功生成了连接数百个焊盘的复杂 LM 互连。最后,制作了一个带有微型 LED 阵列的可拉伸 LM 电路,以展示该技术在可拉伸电子器件中大规模并行布线的实际应用。
{"title":"A Subtractive Method to Chemically Pattern Liquid Metal for Stretchable Circuits","authors":"Kaushal Sumaria, Tingyi “Leo” Liu","doi":"10.1002/admt.202401200","DOIUrl":"https://doi.org/10.1002/admt.202401200","url":null,"abstract":"Advancements in biomedical research have spurred the development of stretchable electronic devices. While soft insulators are readily available, soft conductors with metal‐like electrical conductivity are rare. Gallium and its alloys, being nontoxic and intrinsically stretchable, are potentially ideal solutions. However, current additive liquid metal (LM) patterning methods face limitations in achieving high‐throughput, high‐resolution, and high‐density LM wiring. Here, a subtractive LM patterning method is developed to meet all these requirements simultaneously. The innovative method involves parallel filling a single continuous microfluidic mesh network with LM that short‐circuits all the pins and pads of a circuit, followed by parallel cutting of the unwanted short‐circuited interconnections using hydrochloric acid (HCl) vapor. Cutting locations are pre‐defined by designing narrower intersecting channels, leveraging capillary force for precise filling and cutting. The process is characterized using a multidimensional parametric study with varying LM line widths and HCl concentrations, and in situ impedance measurements to assess insulation performance. To showcase its high‐throughput capabilities, a mock circuit is used to successfully generate complex LM interconnects that connected hundreds of electrical pads. Finally, a stretchable LM circuit with a micro‐LED array is fabricated to demonstrate the practical application of this technology for massively parallel wiring in stretchable electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"208 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning Enables Reliable Colorimetric Detection of pH and Glucose in Wearable Sweat Sensors 机器学习实现对可穿戴式汗液传感器中 pH 值和葡萄糖的可靠比色检测
Pub Date : 2024-09-15 DOI: 10.1002/admt.202401121
Lijun Zhou, Sidharth S. Menon, Xinqi Li, Miqin Zhang, Mohammad H. Malakooti
In healthcare, blood pH and glucose levels are critical indicators, especially for chronic conditions like diabetes. Although taking blood samples is accurate, it is invasive and unaffordable for many. Wearable sensors offer non‐invasive and continuous detection methods, yet face major challenges, such as high cost, inaccuracies, and complex interpretation. Colorimetric wearable sensors integrated with machine learning (ML) are introduced for accurately detecting pH values and glucose concentrations in sweat. These battery‐free and cost‐effective biosensors, made of cotton textiles, are designed to work seamlessly with smartphones for data collection and automated analysis. A new pH indicator is synthesized with enhanced sensitivity and two types of glucose sensors are developed by depositing enzymatic solutions onto cotton substrates. The sensors' performance is assessed using standard solutions with known pH levels ranging from 4 to 10 and glucose concentrations between 0.03 to 1 mm. The photos captured from these sensors are then analyzed by image processing and three different ML algorithms, achieving an accuracy of 90% in pH and glucose detection. These findings provide effective synthesis methods for textile‐based sweat sensors and demonstrate the significance of employing different ML algorithms for their colorimetric analysis, thus eliminating the need for human intervention in the process.
在医疗保健领域,血液 pH 值和葡萄糖水平是至关重要的指标,尤其是对糖尿病等慢性疾病而言。虽然采集血样是准确的,但对许多人来说是侵入性的,而且负担不起。可穿戴传感器提供了非侵入性的连续检测方法,但也面临着高成本、不准确和复杂解释等重大挑战。本文介绍了与机器学习(ML)集成的比色可穿戴传感器,用于准确检测汗液中的 pH 值和葡萄糖浓度。这些免电池、高性价比的生物传感器由棉纺织品制成,可与智能手机无缝配合,用于数据收集和自动分析。通过在棉基质上沉积酶溶液,合成了一种灵敏度更高的新型 pH 指示剂,并开发了两种类型的葡萄糖传感器。使用已知 pH 值在 4 到 10 之间、葡萄糖浓度在 0.03 到 1 mm 之间的标准溶液,对传感器的性能进行了评估。然后通过图像处理和三种不同的 ML 算法对这些传感器拍摄的照片进行分析,pH 值和葡萄糖检测的准确率达到 90%。这些发现为基于纺织品的汗液传感器提供了有效的合成方法,并证明了采用不同的 ML 算法进行比色分析的意义,从而消除了在此过程中的人工干预需求。
{"title":"Machine Learning Enables Reliable Colorimetric Detection of pH and Glucose in Wearable Sweat Sensors","authors":"Lijun Zhou, Sidharth S. Menon, Xinqi Li, Miqin Zhang, Mohammad H. Malakooti","doi":"10.1002/admt.202401121","DOIUrl":"https://doi.org/10.1002/admt.202401121","url":null,"abstract":"In healthcare, blood pH and glucose levels are critical indicators, especially for chronic conditions like diabetes. Although taking blood samples is accurate, it is invasive and unaffordable for many. Wearable sensors offer non‐invasive and continuous detection methods, yet face major challenges, such as high cost, inaccuracies, and complex interpretation. Colorimetric wearable sensors integrated with machine learning (ML) are introduced for accurately detecting pH values and glucose concentrations in sweat. These battery‐free and cost‐effective biosensors, made of cotton textiles, are designed to work seamlessly with smartphones for data collection and automated analysis. A new pH indicator is synthesized with enhanced sensitivity and two types of glucose sensors are developed by depositing enzymatic solutions onto cotton substrates. The sensors' performance is assessed using standard solutions with known pH levels ranging from 4 to 10 and glucose concentrations between 0.03 to 1 m<jats:sc>m</jats:sc>. The photos captured from these sensors are then analyzed by image processing and three different ML algorithms, achieving an accuracy of 90% in pH and glucose detection. These findings provide effective synthesis methods for textile‐based sweat sensors and demonstrate the significance of employing different ML algorithms for their colorimetric analysis, thus eliminating the need for human intervention in the process.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1D Textile Yarn Battery with MoS2@Si Anode and NCM Cathode 采用 MoS2@Si 阳极和 NCM 阴极的一维纺织纱线电池
Pub Date : 2024-09-15 DOI: 10.1002/admt.202400753
Ifra Marriam, Mike Tebyetekerwa, Hifza Aamna Memon, Hiran Chathuranga, Jindi Yang, Kaige Sun, Dewei Chu, Cheng Yan
Wearable electronics are surging for various applications ranging from critical functions like personal health monitoring to communication and entertainment. To power these electronic devices, advanced high‐performing textile‐based batteries are reckoned. In this work, a 1D textile yarn battery is designed using silicon (Si) nanoparticles wrapped in molybdenum disulfide (MoS2) as an anode and layered Ni‐rich material Li[Ni0.8Co0.1Mn0.1]O2 (NCM) as a cathode. The anode materials design is selected to ensure the use of Si due to its high specific capacity but suppressing its known issue of volume expansion by layered MoS2 nanosheets and, at the same time, MoS2 providing channels for lithium‐ion (Li‐ion) transport during electrochemical cycles. The NCM cathode, on the other hand, is adopted as it has higher energy density and improved cycle life. The full yarn battery (FYB) delivered an excellent electrochemical performance (areal capacity of 3.13 mAh cm−2, power density of 421 mW cm−3, and energy density of 78.9 mWh cm−3) with a capacity retention of 86% at 0.1 C and coulombic efficiency of 91.3%. This work pointed out a new way to design and fabricate textile‐based batteries with high‐performance materials using simple, cost‐effective, and scalable approaches targeting to be used as energy sources for future wearable electronics.
从个人健康监测等关键功能到通信和娱乐,各种可穿戴电子设备的应用正在激增。为了给这些电子设备供电,需要先进的高性能纺织品电池。在这项研究中,我们设计了一种一维纺织纱线电池,使用二硫化钼(MoS2)包裹的硅(Si)纳米颗粒作为阳极,层状富镍材料 Li[Ni0.8Co0.1Mn0.1]O2 (NCM) 作为阴极。正极材料的设计选择确保了硅的高比容量,但通过层状 MoS2 纳米片抑制了已知的体积膨胀问题,同时,MoS2 在电化学循环过程中为锂离子(Li-ion)传输提供了通道。另一方面,采用 NCM 正极是因为它具有更高的能量密度和更长的循环寿命。全纱线电池(FYB)具有出色的电化学性能(等容量为 3.13 mAh cm-2,功率密度为 421 mW cm-3,能量密度为 78.9 mWh cm-3),在 0.1 C 时容量保持率为 86%,库仑效率为 91.3%。这项工作为设计和制造基于纺织品的高性能材料电池指出了一条新的途径,它采用了简单、经济、可扩展的方法,目标是用作未来可穿戴电子设备的能源。
{"title":"1D Textile Yarn Battery with MoS2@Si Anode and NCM Cathode","authors":"Ifra Marriam, Mike Tebyetekerwa, Hifza Aamna Memon, Hiran Chathuranga, Jindi Yang, Kaige Sun, Dewei Chu, Cheng Yan","doi":"10.1002/admt.202400753","DOIUrl":"https://doi.org/10.1002/admt.202400753","url":null,"abstract":"Wearable electronics are surging for various applications ranging from critical functions like personal health monitoring to communication and entertainment. To power these electronic devices, advanced high‐performing textile‐based batteries are reckoned. In this work, a 1D textile yarn battery is designed using silicon (Si) nanoparticles wrapped in molybdenum disulfide (MoS<jats:sub>2</jats:sub>) as an anode and layered Ni‐rich material Li[Ni<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>]O<jats:sub>2</jats:sub> (NCM) as a cathode. The anode materials design is selected to ensure the use of Si due to its high specific capacity but suppressing its known issue of volume expansion by layered MoS<jats:sub>2</jats:sub> nanosheets and, at the same time, MoS<jats:sub>2</jats:sub> providing channels for lithium‐ion (Li‐ion) transport during electrochemical cycles. The NCM cathode, on the other hand, is adopted as it has higher energy density and improved cycle life. The full yarn battery (FYB) delivered an excellent electrochemical performance (areal capacity of 3.13 mAh cm<jats:sup>−2</jats:sup>, power density of 421 mW cm<jats:sup>−3</jats:sup>, and energy density of 78.9 mWh cm<jats:sup>−3</jats:sup>) with a capacity retention of 86% at 0.1 C and coulombic efficiency of 91.3%. This work pointed out a new way to design and fabricate textile‐based batteries with high‐performance materials using simple, cost‐effective, and scalable approaches targeting to be used as energy sources for future wearable electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi‐Structural and Biodegradable Humidity Sensors with Enhanced Surface Hydrophilicity 具有增强表面亲水性的多结构可生物降解湿度传感器
Pub Date : 2024-09-13 DOI: 10.1002/admt.202401038
Ricardo Brito‐Pereira, Rita Policia, André S. Macedo, Carmen R Tubio, Joel Borges, Senentxu Lanceros‐Mendez
The increasing environmental impact from electronic waste (e‐waste) has prompted research into sustainable materials for biodegradable and transient electronics. Although some progress has been achieved, further improvement in terms of performance and sustainability is needed. This study introduces a humidity sensor composed of biodegradable poly(D,L‐lactide‐co‐glycolide acid) (PDLG) in novel and multi‐structural morphologies. It highlights the role of the sensors’ microscopic structural features in their performance, particularly in humidity sensitivity, to maximize the retention and detection of water molecules. Techniques such as electrospinning and electrospray are used to achieve specific fiber and sphere morphologies. Oxygen plasma treatments tuned their surface hydrophilicity, enhancing moisture interaction. Physicochemical characterization revealed that plasma‐treated morphologies lost up to 93% of their weight after six weeks, demonstrating high sensor degradation. Functional tests showed that the sphere‐based sensor exhibited low hysteresis (0.19%), high sensitivity (3.9 × 10⁷ MΩ/% RH), excellent repeatability, and fast response time (0.43s) in the 60−95% RH range. Additionally, NaCl functionalization further improved detection sensitivity and extended the detection range down to 30% RH. The biodegradable nature of the PDLG sensors allows their natural decomposition into eco‐friendly by‐products, minimizing their environmental impact, and addressing the environmental challenges associated with e‐waste.
电子垃圾(e-waste)对环境的影响日益严重,促使人们对可生物降解和瞬时电子产品的可持续材料进行研究。虽然已经取得了一些进展,但还需要在性能和可持续性方面进一步改进。本研究介绍了一种由可生物降解聚(D,L-内酰胺-共聚乙二醇酸)(PDLG)组成的湿度传感器,具有新颖的多结构形态。它强调了传感器的微观结构特征在其性能中的作用,特别是在湿度灵敏度方面,以最大限度地保留和检测水分子。电纺丝和电喷雾等技术用于实现特定的纤维和球体形态。氧等离子处理可调整其表面亲水性,增强与湿气的相互作用。理化特性分析表明,经过等离子体处理的形态在六周后重量损失高达 93%,这表明传感器的降解率很高。功能测试显示,球形传感器在 60-95% 相对湿度范围内具有低滞后(0.19%)、高灵敏度(3.9 × 10⁷ MΩ/%相对湿度)、出色的重复性和快速响应时间(0.43 秒)。此外,NaCl 功能化进一步提高了检测灵敏度,并将检测范围扩展至 30% RH。PDLG 传感器的可生物降解特性使其能够自然分解为生态友好型副产品,从而最大限度地减少了对环境的影响,并解决了与电子垃圾相关的环境挑战。
{"title":"Multi‐Structural and Biodegradable Humidity Sensors with Enhanced Surface Hydrophilicity","authors":"Ricardo Brito‐Pereira, Rita Policia, André S. Macedo, Carmen R Tubio, Joel Borges, Senentxu Lanceros‐Mendez","doi":"10.1002/admt.202401038","DOIUrl":"https://doi.org/10.1002/admt.202401038","url":null,"abstract":"The increasing environmental impact from electronic waste (e‐waste) has prompted research into sustainable materials for biodegradable and transient electronics. Although some progress has been achieved, further improvement in terms of performance and sustainability is needed. This study introduces a humidity sensor composed of biodegradable poly(D,L‐lactide‐co‐glycolide acid) (PDLG) in novel and multi‐structural morphologies. It highlights the role of the sensors’ microscopic structural features in their performance, particularly in humidity sensitivity, to maximize the retention and detection of water molecules. Techniques such as electrospinning and electrospray are used to achieve specific fiber and sphere morphologies. Oxygen plasma treatments tuned their surface hydrophilicity, enhancing moisture interaction. Physicochemical characterization revealed that plasma‐treated morphologies lost up to 93% of their weight after six weeks, demonstrating high sensor degradation. Functional tests showed that the sphere‐based sensor exhibited low hysteresis (0.19%), high sensitivity (3.9 × 10⁷ MΩ/% RH), excellent repeatability, and fast response time (0.43s) in the 60−95% RH range. Additionally, NaCl functionalization further improved detection sensitivity and extended the detection range down to 30% RH. The biodegradable nature of the PDLG sensors allows their natural decomposition into eco‐friendly by‐products, minimizing their environmental impact, and addressing the environmental challenges associated with e‐waste.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Materials & Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1