In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation

Mohammad Mehdi Rastikerdar, Jin Huang, Hui Guan, Deepak Ganesan
{"title":"In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation","authors":"Mohammad Mehdi Rastikerdar, Jin Huang, Hui Guan, Deepak Ganesan","doi":"arxiv-2409.07796","DOIUrl":null,"url":null,"abstract":"Wildlife monitoring via camera traps has become an essential tool in ecology,\nbut the deployment of machine learning models for on-device animal\nclassification faces significant challenges due to domain shifts and resource\nconstraints. This paper introduces WildFit, a novel approach that reconciles\nthe conflicting goals of achieving high domain generalization performance and\nensuring efficient inference for camera trap applications. WildFit leverages\ncontinuous background-aware model fine-tuning to deploy ML models tailored to\nthe current location and time window, allowing it to maintain robust\nclassification accuracy in the new environment without requiring significant\ncomputational resources. This is achieved by background-aware data synthesis,\nwhich generates training images representing the new domain by blending\nbackground images with animal images from the source domain. We further enhance\nfine-tuning effectiveness through background drift detection and class\ndistribution drift detection, which optimize the quality of synthesized data\nand improve generalization performance. Our extensive evaluation across\nmultiple camera trap datasets demonstrates that WildFit achieves significant\nimprovements in classification accuracy and computational efficiency compared\nto traditional approaches.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wildlife monitoring via camera traps has become an essential tool in ecology, but the deployment of machine learning models for on-device animal classification faces significant challenges due to domain shifts and resource constraints. This paper introduces WildFit, a novel approach that reconciles the conflicting goals of achieving high domain generalization performance and ensuring efficient inference for camera trap applications. WildFit leverages continuous background-aware model fine-tuning to deploy ML models tailored to the current location and time window, allowing it to maintain robust classification accuracy in the new environment without requiring significant computational resources. This is achieved by background-aware data synthesis, which generates training images representing the new domain by blending background images with animal images from the source domain. We further enhance fine-tuning effectiveness through background drift detection and class distribution drift detection, which optimize the quality of synthesized data and improve generalization performance. Our extensive evaluation across multiple camera trap datasets demonstrates that WildFit achieves significant improvements in classification accuracy and computational efficiency compared to traditional approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位微调物联网摄像头捕获器中的野生动物模型,实现高效适应
通过相机陷阱对野生动物进行监测已成为生态学的重要工具,但由于领域转移和资源限制,在设备上部署用于动物分类的机器学习模型面临着巨大挑战。本文介绍的 WildFit 是一种新颖的方法,它能在实现高领域泛化性能和确保相机陷阱应用的高效推理这两个相互冲突的目标之间取得平衡。WildFit 利用连续的背景感知模型微调技术,部署适合当前位置和时间窗口的 ML 模型,使其能够在新环境中保持稳健的分类准确性,而无需大量的计算资源。这是通过背景感知数据合成实现的,它通过将背景图像与源领域的动物图像混合生成代表新领域的训练图像。我们通过背景漂移检测和类分布漂移检测进一步提高了微调效果,从而优化了合成数据的质量,提高了泛化性能。我们在多个相机陷阱数据集上进行的广泛评估表明,与传统方法相比,WildFit 在分类准确性和计算效率方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1