Optimizing of Novel Magnetic Field-Assisted Electrical Discharge Turning Parameters for Machining EN24 Steel Alloy Using Response Surface Methodology and MCDM-Based CRITIC–TOPSIS Method

IF 2.9 4区 综合性期刊 Q1 Multidisciplinary Arabian Journal for Science and Engineering Pub Date : 2024-09-04 DOI:10.1007/s13369-024-09537-x
Roopak Varshney, Param Singh
{"title":"Optimizing of Novel Magnetic Field-Assisted Electrical Discharge Turning Parameters for Machining EN24 Steel Alloy Using Response Surface Methodology and MCDM-Based CRITIC–TOPSIS Method","authors":"Roopak Varshney, Param Singh","doi":"10.1007/s13369-024-09537-x","DOIUrl":null,"url":null,"abstract":"<p>This study employs a multi-criteria decision-making (MCDM) technique to identify the optimal parameters for the electrical discharge turning (EDT) process used to machine cylindrical EN24 steel alloy. EDT, a significant configuration of EDM, offers a valuable approach for machining cylindrical workpieces. A face-centred central composite design (FCCCD) is employed to establish the experimental design. The CRITIC–TOPSIS method is subsequently implemented to optimize the input parameters: gap current (Ig), pulse on time (Ton), rotational speed (<i>N</i>), and magnetic field assistance (<i>B</i>). Each parameter is investigated at three distinct levels. The study focuses on four response variables: material removal rate (MRR), tool wear rate (TWR), overcut (OC), and surface roughness (<i>R</i><sub>a</sub>). Analysis of variance (ANOVA) is conducted to assess the influence of each input parameter on the observed responses. Criteria importance through inter-criteria correlation (CRITIC) is employed to assign weights to each response, followed by applying the technique for order of preference by similarity to ideal solution (TOPSIS) to identify the ideal machining parameters. The results indicate that run number 16 (Ig: 16A, Ton: 60 µs, <i>N</i>: 1400 RPM, and <i>B</i>: 0.30 T) represents the optimal configuration. Scanning electron microscopy (SEM) analysis further corroborates this finding, confirming superior surface quality compared to other experimental runs.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09537-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs a multi-criteria decision-making (MCDM) technique to identify the optimal parameters for the electrical discharge turning (EDT) process used to machine cylindrical EN24 steel alloy. EDT, a significant configuration of EDM, offers a valuable approach for machining cylindrical workpieces. A face-centred central composite design (FCCCD) is employed to establish the experimental design. The CRITIC–TOPSIS method is subsequently implemented to optimize the input parameters: gap current (Ig), pulse on time (Ton), rotational speed (N), and magnetic field assistance (B). Each parameter is investigated at three distinct levels. The study focuses on four response variables: material removal rate (MRR), tool wear rate (TWR), overcut (OC), and surface roughness (Ra). Analysis of variance (ANOVA) is conducted to assess the influence of each input parameter on the observed responses. Criteria importance through inter-criteria correlation (CRITIC) is employed to assign weights to each response, followed by applying the technique for order of preference by similarity to ideal solution (TOPSIS) to identify the ideal machining parameters. The results indicate that run number 16 (Ig: 16A, Ton: 60 µs, N: 1400 RPM, and B: 0.30 T) represents the optimal configuration. Scanning electron microscopy (SEM) analysis further corroborates this finding, confirming superior surface quality compared to other experimental runs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用响应面方法和基于 MCDM 的 CRITIC-TOPSIS 方法优化加工 EN24 钢合金的新型磁场辅助放电车削参数
本研究采用多标准决策(MCDM)技术来确定用于加工圆柱形 EN24 钢合金的放电加工(EDT)工艺的最佳参数。EDT 是放电加工的一种重要配置,为加工圆柱形工件提供了一种有价值的方法。实验设计采用了面心中心复合设计(FCCCD)。随后采用 CRITIC-TOPSIS 方法优化输入参数:间隙电流 (Ig)、脉冲开启时间 (Ton)、转速 (N) 和磁场辅助 (B)。每个参数都在三个不同的层次上进行研究。研究重点是四个响应变量:材料去除率 (MRR)、刀具磨损率 (TWR)、过切 (OC) 和表面粗糙度 (Ra)。通过方差分析(ANOVA)来评估每个输入参数对观察到的响应的影响。通过标准间相关的标准重要性(CRITIC)为每个响应分配权重,然后应用与理想解决方案相似的优先顺序技术(TOPSIS)来确定理想的加工参数。结果表明,运行编号 16(Ig:16A,Ton:60 µs,N:1400 RPM,B:0.30 T)代表了最佳配置。扫描电子显微镜 (SEM) 分析进一步证实了这一结论,与其他实验运行相比,其表面质量更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering 综合性期刊-综合性期刊
CiteScore
5.20
自引率
3.40%
发文量
0
审稿时长
4.3 months
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Statistical Analysis and Accurate Prediction of Thermophysical Properties of ZnO-MWCNT/EG-Water Hybrid Nanofluid Using Several Artificial Intelligence Methods Proposing a New Egg-Shaped Profile to Further Enhance the Hydrothermal Performance of Extended Dimple Tubes in Turbulent Flows Violence Detection Using Deep Learning Effects of Iron Ion Ratios on the Synthesis and Adsorption Capacity of the Magnetic Graphene Oxide Nanomaterials Enhancing Elderly Care with Wearable Technology: Development of a Dataset for Fall Detection and ADL Classification During Muslim Prayer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1