Ghayah M. Alsulaim, Shada A. Alsharif, Kholoud M. Alnahdi, Hanan A. Althikrallah
{"title":"Pure and Ce-Doped MnO2–ZnO Nanocomposites for Colossal Dielectric Energy Storage and Gas Sensing Applications","authors":"Ghayah M. Alsulaim, Shada A. Alsharif, Kholoud M. Alnahdi, Hanan A. Althikrallah","doi":"10.1007/s13369-024-09532-2","DOIUrl":null,"url":null,"abstract":"<p>ZnO-based nanocomposites have attracted a great attention for energy storage systems and detection of volatile organic compounds. In this study, pure and Ce-doped MnO<sub>2</sub>–ZnO composites were fabricated through a co-precipitation method. The results of X-ray diffraction verified the formation of tetragonal MnO<sub>2</sub> and hexagonal ZnO phases. Scanning electron microscope images of pure and Ce-doped MnO<sub>2</sub>–ZnO composites displayed the formation of rods and semi-spherical particles. The pure and Ce-doped MnO<sub>2</sub>–ZnO composites exhibited semi-stable colossal dielectric constant values of 2.12 × 10<sup>5</sup> and 1.36 × 10<sup>5</sup>, respectively, at a frequency of 45 Hz, which are proper for capacitive energy storage applications. Gas sensing measurements demonstrated that Ce-doped MnO<sub>2</sub>–ZnO composite has a high sensitivity toward 100 ppm acetone gas at operating temperature of 240 °C, while for 100 ppm ethanol this sensor has a high sensitivity at 180 °C. As a result, through adjusting the operating temperature, the selectivity of Ce-doped MnO<sub>2</sub>–ZnO sensor can be controlled for acetone and ethanol gases. Furthermore, this sensor possesses good selectivity and stability as well as proper linear relations between the sensitivity and concentrations of acetone and ethanol gases.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"62 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09532-2","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
ZnO-based nanocomposites have attracted a great attention for energy storage systems and detection of volatile organic compounds. In this study, pure and Ce-doped MnO2–ZnO composites were fabricated through a co-precipitation method. The results of X-ray diffraction verified the formation of tetragonal MnO2 and hexagonal ZnO phases. Scanning electron microscope images of pure and Ce-doped MnO2–ZnO composites displayed the formation of rods and semi-spherical particles. The pure and Ce-doped MnO2–ZnO composites exhibited semi-stable colossal dielectric constant values of 2.12 × 105 and 1.36 × 105, respectively, at a frequency of 45 Hz, which are proper for capacitive energy storage applications. Gas sensing measurements demonstrated that Ce-doped MnO2–ZnO composite has a high sensitivity toward 100 ppm acetone gas at operating temperature of 240 °C, while for 100 ppm ethanol this sensor has a high sensitivity at 180 °C. As a result, through adjusting the operating temperature, the selectivity of Ce-doped MnO2–ZnO sensor can be controlled for acetone and ethanol gases. Furthermore, this sensor possesses good selectivity and stability as well as proper linear relations between the sensitivity and concentrations of acetone and ethanol gases.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.