Parametric Optimization of AWJM Using RSM-Grey-TLBO-Based MCDM Approach for Titanium Grade 5 Alloy

IF 2.9 4区 综合性期刊 Q1 Multidisciplinary Arabian Journal for Science and Engineering Pub Date : 2024-08-31 DOI:10.1007/s13369-024-09500-w
Amit Kumar Dubey, Yogesh Kumar, Santosh Kumar, Avinash Ravi Raja
{"title":"Parametric Optimization of AWJM Using RSM-Grey-TLBO-Based MCDM Approach for Titanium Grade 5 Alloy","authors":"Amit Kumar Dubey, Yogesh Kumar, Santosh Kumar, Avinash Ravi Raja","doi":"10.1007/s13369-024-09500-w","DOIUrl":null,"url":null,"abstract":"<p>Abrasive water jet machining (AWJM) is an incredibly effective method for processing challenging materials, overcoming the obstacles encountered when working with them. High-pressure water combined with abrasive particles is used to erode and penetrate the workpiece material. Processing titanium grade 5 alloy can be a complex task, but it is possible to efficiently machine it using abrasive water jet machining. The study analyzes the impact of pressure (P), abrasive flow rate (AFRE), stand-off distance (SoD) and traverse speed (TRS). A Taguchi L25 array (orthogonal) was utilized for carrying out the experiments. The best process parameters were identified through response surface methodology in order to reduce processing time (PT) and surface roughness (SR), while increasing hardness (HRC). The results, including processing time, surface roughness, and hardness, were transformed into a composite grade through the application of grey relational analysis. The empirical model was formulated utilizing the teaching–learning-based optimization (TLBO) technique and the best process parameters were investigated using RSM-Grey-TLBO-based multi-criteria decision-making. The RSM-Grey-TLBO MCDM method proposes an optimized configuration for GRG (mean method) with parameters P = 320 MPa, SoD = 4 mm, TRS = 190 m/min, AFRE = 12 g/sec and for the weighted method of GRG with parameters P = 320 MPa, SoD = 8 mm, TRS-150 m/min, AFRE-9 g/sec. The percentage inaccuracies for the forecasted errors are 7.47% and 7.33% in GRG (mean method) and GRG (weighted method), respectively.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09500-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Abrasive water jet machining (AWJM) is an incredibly effective method for processing challenging materials, overcoming the obstacles encountered when working with them. High-pressure water combined with abrasive particles is used to erode and penetrate the workpiece material. Processing titanium grade 5 alloy can be a complex task, but it is possible to efficiently machine it using abrasive water jet machining. The study analyzes the impact of pressure (P), abrasive flow rate (AFRE), stand-off distance (SoD) and traverse speed (TRS). A Taguchi L25 array (orthogonal) was utilized for carrying out the experiments. The best process parameters were identified through response surface methodology in order to reduce processing time (PT) and surface roughness (SR), while increasing hardness (HRC). The results, including processing time, surface roughness, and hardness, were transformed into a composite grade through the application of grey relational analysis. The empirical model was formulated utilizing the teaching–learning-based optimization (TLBO) technique and the best process parameters were investigated using RSM-Grey-TLBO-based multi-criteria decision-making. The RSM-Grey-TLBO MCDM method proposes an optimized configuration for GRG (mean method) with parameters P = 320 MPa, SoD = 4 mm, TRS = 190 m/min, AFRE = 12 g/sec and for the weighted method of GRG with parameters P = 320 MPa, SoD = 8 mm, TRS-150 m/min, AFRE-9 g/sec. The percentage inaccuracies for the forecasted errors are 7.47% and 7.33% in GRG (mean method) and GRG (weighted method), respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于 RSM-Grey-TLBO 的 MCDM 方法对 5 级钛合金的 AWJM 进行参数优化
加砂水射流加工 (AWJM) 是一种非常有效的方法,可用于加工具有挑战性的材料,克服加工时遇到的障碍。高压水与磨料颗粒相结合,用于侵蚀和穿透工件材料。加工 5 级钛合金是一项复杂的任务,但可以使用加砂水射流加工技术对其进行高效加工。本研究分析了压力(P)、磨料流速(AFRE)、间距(SoD)和横移速度(TRS)的影响。实验采用了 Taguchi L25 阵列(正交)。通过响应面方法确定了最佳工艺参数,以减少加工时间(PT)和表面粗糙度(SR),同时提高硬度(HRC)。通过应用灰色关系分析法,将包括加工时间、表面粗糙度和硬度在内的结果转化为综合等级。利用基于教学的优化(TLBO)技术建立了经验模型,并利用基于 RSM-Grey-TLBO 的多标准决策研究了最佳工艺参数。RSM-Grey-TLBO MCDM 方法为 GRG(平均法)提出了优化配置,参数为 P = 320 MPa、SoD = 4 mm、TRS = 190 m/min、AFRE = 12 g/sec;为 GRG 的加权法提出了优化配置,参数为 P = 320 MPa、SoD = 8 mm、TRS-150 m/min、AFRE-9 g/sec。在 GRG(平均法)和 GRG(加权法)中,预测误差的百分比误差分别为 7.47% 和 7.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering 综合性期刊-综合性期刊
CiteScore
5.20
自引率
3.40%
发文量
0
审稿时长
4.3 months
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Statistical Analysis and Accurate Prediction of Thermophysical Properties of ZnO-MWCNT/EG-Water Hybrid Nanofluid Using Several Artificial Intelligence Methods Proposing a New Egg-Shaped Profile to Further Enhance the Hydrothermal Performance of Extended Dimple Tubes in Turbulent Flows Violence Detection Using Deep Learning Effects of Iron Ion Ratios on the Synthesis and Adsorption Capacity of the Magnetic Graphene Oxide Nanomaterials Enhancing Elderly Care with Wearable Technology: Development of a Dataset for Fall Detection and ADL Classification During Muslim Prayer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1