{"title":"A real-time calibration method based on time-to-digital converter for accelerator timing system","authors":"Qi-Hao Duan, Liang Ge, Yan-Hao Jia, Jie-Yu Zhu, Wei Zhang","doi":"10.1007/s41365-024-01510-5","DOIUrl":null,"url":null,"abstract":"<p>The high-intensity heavy-ion accelerator facility (HIAF) is a scientific research facility complex composed of multiple cascade accelerators of different types, which pose a scheduling problem for devices distributed over a certain range of 2 km, involving over a hundred devices. The white rabbit, a technology-enhancing Gigabit Ethernet, has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration parameters with high precision. This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip (SoC). The system consists of four multi-sample delay lines, a bubble-proof encoder, an edge controller for managing data from different channels, and a highly effective calibration module that benefits from the SoC architecture. The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test. The design presented in this study refines the calibration precision of the HIAF timing system. This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis. It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators, such as white rabbits on HIAF.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01510-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The high-intensity heavy-ion accelerator facility (HIAF) is a scientific research facility complex composed of multiple cascade accelerators of different types, which pose a scheduling problem for devices distributed over a certain range of 2 km, involving over a hundred devices. The white rabbit, a technology-enhancing Gigabit Ethernet, has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration parameters with high precision. This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip (SoC). The system consists of four multi-sample delay lines, a bubble-proof encoder, an edge controller for managing data from different channels, and a highly effective calibration module that benefits from the SoC architecture. The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test. The design presented in this study refines the calibration precision of the HIAF timing system. This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis. It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators, such as white rabbits on HIAF.
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.