{"title":"Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review.","authors":"Xu Bocheng,Rodrigo França","doi":"10.1088/2057-1976/ad795c","DOIUrl":null,"url":null,"abstract":"This paper reviews 3D bioprinting technologies and Bio-inks materials in brain neuroscience applications. The integration of 3D bioprinting technology in neuroscience research offers a unique platform to create complex brain and tissue architectures that mimic the mechanical, architectural, and biochemical properties of native tissues, providing a robust tool for modeling, repair, and drug screening applications. The review provides discussions and conclusions to highlight the current research, research gaps and recommendations for the future research on 3D bioprinting in neuroscience. The investigation shows that 3D bioprinting has a great potential to fabricate brain-like tissue constructs, holds great promise for regenerative medicine and drug testing models, offering new avenues for studying brain diseases and potential treatments. It is also found that the future of bioinks requires continuous improvement and innovation to meet the needs of applications in the field of neuroscience, aiming to improve the functionality and performance of bioink materials for neural tissue engineering.
.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"63 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad795c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reviews 3D bioprinting technologies and Bio-inks materials in brain neuroscience applications. The integration of 3D bioprinting technology in neuroscience research offers a unique platform to create complex brain and tissue architectures that mimic the mechanical, architectural, and biochemical properties of native tissues, providing a robust tool for modeling, repair, and drug screening applications. The review provides discussions and conclusions to highlight the current research, research gaps and recommendations for the future research on 3D bioprinting in neuroscience. The investigation shows that 3D bioprinting has a great potential to fabricate brain-like tissue constructs, holds great promise for regenerative medicine and drug testing models, offering new avenues for studying brain diseases and potential treatments. It is also found that the future of bioinks requires continuous improvement and innovation to meet the needs of applications in the field of neuroscience, aiming to improve the functionality and performance of bioink materials for neural tissue engineering.
.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.