Filip Samal,Vojtech Cerny,Petr Kujal,Jakub Jezek,Jiri Skala-Rosenbaum,Josef Sepitka
{"title":"Distribution of mechanical properties of native human ligamentum flavum depending on histopathological changes.","authors":"Filip Samal,Vojtech Cerny,Petr Kujal,Jakub Jezek,Jiri Skala-Rosenbaum,Josef Sepitka","doi":"10.1088/2057-1976/ad78e2","DOIUrl":null,"url":null,"abstract":"This study aimed to characterize the mechanical properties of native human ligamentum flavum (LF) and correlate them with histopathological changes. Mechanical property gradients across the cranial, medial, and caudal regions of LF were mapped and compared with histological sections. We also compared lumbar spinal stenosis (LSS) samples with disc herniation (DH) samples as reference material to identify differences in mechanical properties and histopathological features. Our results revealed significant heterogeneity in LF mechanical properties, with local variations correlating with specific histopathological changes such as chondroid metaplasia and loss of elastic fibers. These findings underscore the importance of considering LF heterogeneity in mechanical characterization and provide insights into its behavior under pathological conditions.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"22 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad78e2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to characterize the mechanical properties of native human ligamentum flavum (LF) and correlate them with histopathological changes. Mechanical property gradients across the cranial, medial, and caudal regions of LF were mapped and compared with histological sections. We also compared lumbar spinal stenosis (LSS) samples with disc herniation (DH) samples as reference material to identify differences in mechanical properties and histopathological features. Our results revealed significant heterogeneity in LF mechanical properties, with local variations correlating with specific histopathological changes such as chondroid metaplasia and loss of elastic fibers. These findings underscore the importance of considering LF heterogeneity in mechanical characterization and provide insights into its behavior under pathological conditions.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.