A Two-Channel Interleaved ADC With Fast-Converging Foreground Time Calibration and Comparison-Based Control Logic

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Very Large Scale Integration (VLSI) Systems Pub Date : 2024-09-09 DOI:10.1109/TVLSI.2024.3449293
Xiang Yan;Kefan Qin;Xinyue Zheng;Weibo Hu;Wei Ma;Haitao Cui
{"title":"A Two-Channel Interleaved ADC With Fast-Converging Foreground Time Calibration and Comparison-Based Control Logic","authors":"Xiang Yan;Kefan Qin;Xinyue Zheng;Weibo Hu;Wei Ma;Haitao Cui","doi":"10.1109/TVLSI.2024.3449293","DOIUrl":null,"url":null,"abstract":"A dual-channel interleaved analog-to-digital converter (ADC) operating at 320 MS/s is prototyped to validate a fast-converging foreground time calibration algorithm that is independent of ADC offset errors. An input polarity switching technique is introduced to eliminate the impact of sub-ADC offset mismatches during foreground time calibration. After foreground calibration, the signal-to-noise and distortion ratio (SNDR) and spurious free dynamic range (SFDR) are improved by 8.6 and 18.4 dB, respectively. In the sub-ADC design, a comparison functionality is enabled in the digital circuits to prevent metastability and expedite data conversion. The single-channel conversion rates reach 160 MS/s. The ADC is implemented via 40-nm digital CMOS technology, achieving a 52.01 dB signal-to-noise plus distortion ratio (SNDR) at near-Nyquist input while sampling at 320 MS/s. The overall power consumption is 3.65 mW, which includes an on-chip reference buffer and a clock circuit.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 11","pages":"2001-2011"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669386/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

A dual-channel interleaved analog-to-digital converter (ADC) operating at 320 MS/s is prototyped to validate a fast-converging foreground time calibration algorithm that is independent of ADC offset errors. An input polarity switching technique is introduced to eliminate the impact of sub-ADC offset mismatches during foreground time calibration. After foreground calibration, the signal-to-noise and distortion ratio (SNDR) and spurious free dynamic range (SFDR) are improved by 8.6 and 18.4 dB, respectively. In the sub-ADC design, a comparison functionality is enabled in the digital circuits to prevent metastability and expedite data conversion. The single-channel conversion rates reach 160 MS/s. The ADC is implemented via 40-nm digital CMOS technology, achieving a 52.01 dB signal-to-noise plus distortion ratio (SNDR) at near-Nyquist input while sampling at 320 MS/s. The overall power consumption is 3.65 mW, which includes an on-chip reference buffer and a clock circuit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有快速转换前景时间校准和基于比较的控制逻辑的双通道交错 ADC
对工作频率为 320 MS/s 的双通道交错模数转换器 (ADC) 进行了原型验证,以验证独立于 ADC 偏移误差的快速转换前景时间校准算法。在前景时间校准过程中,引入了一种输入极性切换技术,以消除次 ADC 偏移失配的影响。前景校准后,信噪比和失真比 (SNDR) 以及无杂散动态范围 (SFDR) 分别提高了 8.6 和 18.4 dB。在次级 ADC 设计中,数字电路启用了比较功能,以防止不稳定性并加快数据转换。单通道转换速率达到 160 MS/s。ADC 采用 40 纳米数字 CMOS 技术实现,在接近奈奎斯特输入时达到 52.01 dB 的信噪比加失真比 (SNDR),同时采样率为 320 MS/s。总体功耗为 3.65 mW,其中包括一个片上基准缓冲器和一个时钟电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
期刊最新文献
Table of Contents IEEE Transactions on Very Large Scale Integration (VLSI) Systems Society Information IEEE Transactions on Very Large Scale Integration (VLSI) Systems Publication Information Table of Contents IEEE Transactions on Very Large Scale Integration (VLSI) Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1