Power-Efficient Analog Hardware Architecture of the Learning Vector Quantization Algorithm for Brain Tumor Classification

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Very Large Scale Integration (VLSI) Systems Pub Date : 2024-08-30 DOI:10.1109/TVLSI.2024.3447903
Vassilis Alimisis;Emmanouil Anastasios Serlis;Andreas Papathanasiou;Nikolaos P. Eleftheriou;Paul P. Sotiriadis
{"title":"Power-Efficient Analog Hardware Architecture of the Learning Vector Quantization Algorithm for Brain Tumor Classification","authors":"Vassilis Alimisis;Emmanouil Anastasios Serlis;Andreas Papathanasiou;Nikolaos P. Eleftheriou;Paul P. Sotiriadis","doi":"10.1109/TVLSI.2024.3447903","DOIUrl":null,"url":null,"abstract":"This study introduces a design methodology pertaining to analog hardware architecture for the implementation of the learning vector quantization (LVQ) algorithm. It consists of three main approaches that are separated based on the distance calculation circuit (DCC) and, more specifically; Euclidean distance, Sigmoid function, and Squarer circuits. The main building blocks of each approach are the DCC and the current comparator (CC). The operational principles of the architecture are extensively elucidated and put into practice through a power-efficient configuration (operating less than 650 nW) within a low-voltage setup (0.6 V). Each specific implementation is tested on a brain tumor classification task achieving more than 96.00% classification accuracy. The designs are realized using a 90-nm CMOS process and developed utilizing the Cadence IC Suite for both schematic and physical design. Through a comparative analysis of postlayout simulation outcomes with an equivalent software-based classifier and related works, the accuracy of the applied modeling and design methodologies is validated.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 11","pages":"1969-1982"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10659713/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a design methodology pertaining to analog hardware architecture for the implementation of the learning vector quantization (LVQ) algorithm. It consists of three main approaches that are separated based on the distance calculation circuit (DCC) and, more specifically; Euclidean distance, Sigmoid function, and Squarer circuits. The main building blocks of each approach are the DCC and the current comparator (CC). The operational principles of the architecture are extensively elucidated and put into practice through a power-efficient configuration (operating less than 650 nW) within a low-voltage setup (0.6 V). Each specific implementation is tested on a brain tumor classification task achieving more than 96.00% classification accuracy. The designs are realized using a 90-nm CMOS process and developed utilizing the Cadence IC Suite for both schematic and physical design. Through a comparative analysis of postlayout simulation outcomes with an equivalent software-based classifier and related works, the accuracy of the applied modeling and design methodologies is validated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于脑肿瘤分类的学习矢量量化算法的高能效模拟硬件架构
本研究介绍了实现学习矢量量化(LVQ)算法的模拟硬件架构设计方法。它包括基于距离计算电路 (DCC) 的三种主要方法,更具体地说,包括欧氏距离、西格莫函数和 Squarer 电路。每种方法的主要构件是 DCC 和电流比较器 (CC)。通过低电压设置(0.6 V)中的高能效配置(运行功耗小于 650 nW),该架构的运行原理得到了广泛阐释并付诸实践。每个具体实现都在脑肿瘤分类任务中进行了测试,分类准确率超过 96.00%。这些设计采用 90 纳米 CMOS 工艺实现,并利用 Cadence IC Suite 进行原理图和物理设计。通过将布局后仿真结果与基于软件的等效分类器和相关作品进行比较分析,验证了应用建模和设计方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
期刊最新文献
Table of Contents IEEE Transactions on Very Large Scale Integration (VLSI) Systems Society Information IEEE Transactions on Very Large Scale Integration (VLSI) Systems Publication Information Table of Contents IEEE Transactions on Very Large Scale Integration (VLSI) Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1