Imran S. Khan, William E. McMahon, Chun-Sheng Jiang, Patrick Walker, Andriy Zakutayev, Andrew G. Norman
{"title":"Pulsed Laser Deposition of Epitaxial SrTiO3/Sr3Al2O6 Templates as a Water-Soluble Sacrificial Layer for GaAs Growth and Lift-Off","authors":"Imran S. Khan, William E. McMahon, Chun-Sheng Jiang, Patrick Walker, Andriy Zakutayev, Andrew G. Norman","doi":"10.1021/acs.cgd.3c01531","DOIUrl":null,"url":null,"abstract":"Despite the record-high efficiency of GaAs solar cells, their terrestrial application is limited due to both the particularly high costs related to the required single-crystal substrates and epitaxial growth. A water-soluble lift-off layer could reduce costs by avoiding the need for toxic and dangerous etchants, substrate repolishing, and expensive process steps. Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> (SAO) is a water-soluble cubic oxide, and SrTiO<sub>3</sub> (STO) is a perovskite oxide, where <i>a</i><sub>SAO</sub> ≈ 4 × <i>a</i><sub>STO</sub> ≈ (2√2)<i>a</i><sub>GaAs</sub>. Here, the pulsed laser-deposited epitaxial growth of SrTiO<sub>3</sub>/Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> templates on STO and Ge substrates for epitaxial GaAs growth was investigated, where SAO works as a sacrificial layer and STO protects the hygroscopic SAO during substrate transfer between deposition chambers. We identified that the SAO film quality is strongly dependent on the growth temperature and the O<sub>2</sub> partial pressure, where either a high <i>T</i> or a high <i>P</i>(O<sub>2</sub>) improves the quality. XRD spectra of the films with optimized deposition parameters showed an epitaxial STO/SAO stack aligned to the STO (100) substrate, and TEM analysis revealed that the grown films were epitaxially crystalline throughout the thickness. The STO/SAO growth on Ge substrates at a high <i>T</i> with no intentional O<sub>2</sub> flow resulted in some nonepitaxial grains and surface pits, likely due to partial Ge oxidation. GaAs was grown by metalorganic vapor-phase epitaxy (MOVPE) on STO/SAO/STO templates. Lift-off after dissolving the sacrificial SAO in water resulted in free-standing ⟨001⟩ preferentially oriented polycrystalline GaAs.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.3c01531","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the record-high efficiency of GaAs solar cells, their terrestrial application is limited due to both the particularly high costs related to the required single-crystal substrates and epitaxial growth. A water-soluble lift-off layer could reduce costs by avoiding the need for toxic and dangerous etchants, substrate repolishing, and expensive process steps. Sr3Al2O6 (SAO) is a water-soluble cubic oxide, and SrTiO3 (STO) is a perovskite oxide, where aSAO ≈ 4 × aSTO ≈ (2√2)aGaAs. Here, the pulsed laser-deposited epitaxial growth of SrTiO3/Sr3Al2O6 templates on STO and Ge substrates for epitaxial GaAs growth was investigated, where SAO works as a sacrificial layer and STO protects the hygroscopic SAO during substrate transfer between deposition chambers. We identified that the SAO film quality is strongly dependent on the growth temperature and the O2 partial pressure, where either a high T or a high P(O2) improves the quality. XRD spectra of the films with optimized deposition parameters showed an epitaxial STO/SAO stack aligned to the STO (100) substrate, and TEM analysis revealed that the grown films were epitaxially crystalline throughout the thickness. The STO/SAO growth on Ge substrates at a high T with no intentional O2 flow resulted in some nonepitaxial grains and surface pits, likely due to partial Ge oxidation. GaAs was grown by metalorganic vapor-phase epitaxy (MOVPE) on STO/SAO/STO templates. Lift-off after dissolving the sacrificial SAO in water resulted in free-standing ⟨001⟩ preferentially oriented polycrystalline GaAs.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.