Structural Integrities of Symmetric and Unsymmetric trans-Bis-pyridyl Ethylene Powders Exposed to Gamma Radiation: Packing and Electronic Considerations Assisted by Electron Diffraction.

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-10-16 eCollection Date: 2024-11-06 DOI:10.1021/acs.cgd.4c00895
Samantha J Kruse, Pierre Le Magueres, Eric W Reinheimer, Tori Z Forbes, Leonard R MacGillivray
{"title":"Structural Integrities of Symmetric and Unsymmetric <i>trans</i>-Bis-pyridyl Ethylene Powders Exposed to Gamma Radiation: Packing and Electronic Considerations Assisted by Electron Diffraction.","authors":"Samantha J Kruse, Pierre Le Magueres, Eric W Reinheimer, Tori Z Forbes, Leonard R MacGillivray","doi":"10.1021/acs.cgd.4c00895","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation detection (dosimetry) most commonly uses scintillating materials in a wide array of fields, ranging from energy to medicine. Scintillators must be able to not only fluoresce owing to the presence of a suitable chromophore but also withstand damage from radiation over prolonged periods of time. While it is inevitable that radiation will cause damage to the physical and chemical properties of materials, there is limited understanding of features within solid-state scintillators that afford increased structural integrity upon exposure to gamma (γ) radiation. Even fewer studies have evaluated both physical- and atomistic-level properties of organic solid-state materials. Previous work demonstrated cocrystalline materials afford radiation resistance in comparison to the single component counterparts, as realized by <i>trans</i>-1,2-bis(4-pyridyl)ethylene (<b>4,4'-bpe</b>). To support the rational design of radiation-resistant scintillators, we have examined all symmetric and unsymmetric isomers of <i>trans</i>-1-(<i>n</i>-pyridyl)2-(<i>m</i>-pyridyl)ethylene (<i>n,m</i>'<i>-</i>bpe, where <i>n</i> and/or <i>m</i> = 2, 3, or 4) solid-state crystalline materials. Experimental methods employed include single-crystal, powder, and electron diffraction as well as solid-state fluorimetry. Periodic density functional theory (DFT) calculations were used to understand the atomistic-level differences in bond lengths, bond orders, and packing. Electron diffraction was also utilized to determine the structure of a nanocrystalline sample. The results provide insights into possible trends involving factors such as molecular symmetry which provides radiation resistance as well as information for rationally designing single and multicomponent scintillators with the intent of minimizing changes upon γ-radiation exposure.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00895","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiation detection (dosimetry) most commonly uses scintillating materials in a wide array of fields, ranging from energy to medicine. Scintillators must be able to not only fluoresce owing to the presence of a suitable chromophore but also withstand damage from radiation over prolonged periods of time. While it is inevitable that radiation will cause damage to the physical and chemical properties of materials, there is limited understanding of features within solid-state scintillators that afford increased structural integrity upon exposure to gamma (γ) radiation. Even fewer studies have evaluated both physical- and atomistic-level properties of organic solid-state materials. Previous work demonstrated cocrystalline materials afford radiation resistance in comparison to the single component counterparts, as realized by trans-1,2-bis(4-pyridyl)ethylene (4,4'-bpe). To support the rational design of radiation-resistant scintillators, we have examined all symmetric and unsymmetric isomers of trans-1-(n-pyridyl)2-(m-pyridyl)ethylene (n,m'-bpe, where n and/or m = 2, 3, or 4) solid-state crystalline materials. Experimental methods employed include single-crystal, powder, and electron diffraction as well as solid-state fluorimetry. Periodic density functional theory (DFT) calculations were used to understand the atomistic-level differences in bond lengths, bond orders, and packing. Electron diffraction was also utilized to determine the structure of a nanocrystalline sample. The results provide insights into possible trends involving factors such as molecular symmetry which provides radiation resistance as well as information for rationally designing single and multicomponent scintillators with the intent of minimizing changes upon γ-radiation exposure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暴露于伽马射线的对称和不对称反式双吡啶乙烯粉末的结构积分:电子衍射辅助下的堆积和电子考虑因素。
辐射探测(剂量测定)最常用的闪烁材料广泛应用于从能源到医药等各个领域。闪烁体不仅要能因存在合适的发色团而发出荧光,还要能承受长时间辐射的损害。虽然辐射不可避免地会对材料的物理和化学性质造成破坏,但人们对固态闪烁体在暴露于伽马(γ)辐射时可提高结构完整性的特性了解有限。对有机固态材料的物理和原子层面特性进行评估的研究更是少之又少。以前的研究表明,与单组分材料相比,共晶材料具有抗辐射能力,反式-1,2-双(4-吡啶基)乙烯(4,4'-bpe)就是这样实现的。为了支持抗辐射闪烁体的合理设计,我们研究了反式-1-(正吡啶基)2-(间吡啶基)乙烯(n,m'-bpe,其中 n 和/或 m = 2、3 或 4)固态晶体材料的所有对称和非对称异构体。采用的实验方法包括单晶、粉末和电子衍射以及固态荧光测定法。利用周期密度泛函理论(DFT)计算来了解键长、键阶和堆积的原子级差异。电子衍射也被用来确定纳米晶体样品的结构。研究结果使人们深入了解了分子对称性等因素可能带来的趋势,这些因素提供了抗辐射能力,同时也为合理设计单组分和多组分闪烁体提供了信息,目的是最大限度地减少γ 辐射照射时的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Structural Integrities of Symmetric and Unsymmetric trans-Bis-pyridyl Ethylene Powders Exposed to Gamma Radiation: Packing and Electronic Considerations Assisted by Electron Diffraction. On the Design of the Metal-Support Interface in Methanol Electrocatalytic Oxidation. A [Mn8] Defective Supertetrahedron T3 and Its Dimeric [Mn16] Analogue. Microfluidic Avenue to Manipulate Polycrystalline Materials: A Case Study of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane Optimization of Growth Temperature and V/III Ratio toward High-Quality Si-Doped Aluminum Nitride Thin Films on Sapphire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1