Effect of mixed metal oxide-based catalysts for the removal of hydrophobic phthalates from water

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-09-02 DOI:10.1002/clen.202300253
Salman Farissi, Peringai Aswin, Anbazhagi Muthukumar, Ayyamperumal Sakthivel, Muthukumar Muthuchamy
{"title":"Effect of mixed metal oxide-based catalysts for the removal of hydrophobic phthalates from water","authors":"Salman Farissi,&nbsp;Peringai Aswin,&nbsp;Anbazhagi Muthukumar,&nbsp;Ayyamperumal Sakthivel,&nbsp;Muthukumar Muthuchamy","doi":"10.1002/clen.202300253","DOIUrl":null,"url":null,"abstract":"<p>Contaminants of emerging concern (CECs) such as phthalic acid esters (PAEs) are ubiquitous, toxic and persistent in aquatic environments. Current study explored mixed metal oxide catalysts derived from magnesium aluminium (MAH), magnesium aluminium ruthenium (MAR-H), magnesium aluminium nickel (MANH) hydroxides and copper aluminium hydroxides of ammonium (CAM-Am) and sodium molybdate (CAM-Na) to remove dibutyl phthalate (DBP) and di-2-ethyl hexyl phthalate (DEHP) from water. Powder X-ray diffraction (XRD) studies of the catalysts before and after the treatment showed that their structures were stable and robust. During Fourier Transform Infrared (FTIR) studies, vibrational bands or peaks of ester and alkane functional groups of DBP and DEHP were observed at all the catalysts after treatment. Thermogravimetric analysis (TGA) confirmed phthalate adsorption at the five catalysts. Hydrolysis of DBP and DEHP was observed during treatment using CAM-Am and CAM-Na that was analysed and quantified using total organic carbon (TOC), high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS). From TOC analyses, optimal conditions of 500 mg L<sup>−1</sup> catalyst dosage and 30 h treatment time were deduced for catalytic hydrolysis of DBP and DEHP. Present study illustrated that the catalysts MAH and MANH can adsorb PAEs while CAM-Na can adsorb and hydrolyse them.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300253","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Contaminants of emerging concern (CECs) such as phthalic acid esters (PAEs) are ubiquitous, toxic and persistent in aquatic environments. Current study explored mixed metal oxide catalysts derived from magnesium aluminium (MAH), magnesium aluminium ruthenium (MAR-H), magnesium aluminium nickel (MANH) hydroxides and copper aluminium hydroxides of ammonium (CAM-Am) and sodium molybdate (CAM-Na) to remove dibutyl phthalate (DBP) and di-2-ethyl hexyl phthalate (DEHP) from water. Powder X-ray diffraction (XRD) studies of the catalysts before and after the treatment showed that their structures were stable and robust. During Fourier Transform Infrared (FTIR) studies, vibrational bands or peaks of ester and alkane functional groups of DBP and DEHP were observed at all the catalysts after treatment. Thermogravimetric analysis (TGA) confirmed phthalate adsorption at the five catalysts. Hydrolysis of DBP and DEHP was observed during treatment using CAM-Am and CAM-Na that was analysed and quantified using total organic carbon (TOC), high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS). From TOC analyses, optimal conditions of 500 mg L−1 catalyst dosage and 30 h treatment time were deduced for catalytic hydrolysis of DBP and DEHP. Present study illustrated that the catalysts MAH and MANH can adsorb PAEs while CAM-Na can adsorb and hydrolyse them.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合金属氧化物的催化剂对去除水中疏水性邻苯二甲酸盐的影响
邻苯二甲酸酯 (PAE) 等新关注污染物 (CEC) 在水生环境中无处不在,具有毒性和持久性。目前的研究探索了由镁铝(MAH)、镁铝钌(MAR-H)、镁铝镍(MANH)氢氧化物以及铵(CAM-Am)和钼酸钠(CAM-Na)铜铝氢氧化物衍生的混合金属氧化物催化剂,以去除水中的邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二-2-乙基己酯(DEHP)。对处理前后的催化剂进行的粉末 X 射线衍射 (XRD) 研究表明,它们的结构稳定而坚固。在傅立叶变换红外(FTIR)研究中,所有催化剂在处理后都观察到了 DBP 和 DEHP 的酯和烷官能团的振动带或峰值。热重分析 (TGA) 证实了五种催化剂对邻苯二甲酸酯的吸附作用。在使用 CAM-Am 和 CAM-Na 处理过程中观察到了 DBP 和 DEHP 的水解,并使用总有机碳 (TOC)、高效液相色谱 (HPLC) 和高分辨率质谱 (HRMS) 对其进行了分析和量化。通过 TOC 分析,推导出了催化水解 DBP 和 DEHP 的最佳条件:500 毫克/升催化剂用量和 30 小时处理时间。本研究表明,催化剂 MAH 和 MANH 可吸附 PAEs,而 CAM-Na 可吸附并水解 PAEs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 12/2024 Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction Commercial Blue Textile Dye Decolorization Using Aspergillus oryzae RH1 Isolated From Fermented Miso Issue Information: Clean Soil Air Water. 11/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1