Framing Geohazard Learning as Risk Assessment Using a Computer Simulation: A Case of Flooding

IF 3.3 1区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Journal of Science Education and Technology Pub Date : 2024-09-13 DOI:10.1007/s10956-024-10151-7
Amy Pallant, Hee-Sun Lee, Trudi Lord, Christopher Lore
{"title":"Framing Geohazard Learning as Risk Assessment Using a Computer Simulation: A Case of Flooding","authors":"Amy Pallant, Hee-Sun Lee, Trudi Lord, Christopher Lore","doi":"10.1007/s10956-024-10151-7","DOIUrl":null,"url":null,"abstract":"<p>In order to characterize students’ risk assessment explanations based on the Geohazard Risk Framework, which describes four key elements of risk for high school science education, we investigate whether student explanations include the following risk elements: scientific factors, impacts, human influences, and likelihood. This study uses the Geohazard Risk Framework to analyze how students explain their risk assessments and risk mitigation strategies based on experimentation with an interactive computer simulation designed to model flooding risks and hazards. We analyzed students’ explanations using data from 375 students from three suburban, three urban, and three rural schools to learn (1) how secondary students experiment with the simulation and explain flooding risk based on evidence from the simulation and (2) how students carry out and explain model-based testing of a risk mitigation strategy with a simulation. We also analyzed snapshots created by students of the simulation that were used as evidence to support their explanations. Our findings reveal that while the majority of students could identify at least one risk element, those who engaged deeply with the simulation's features demonstrated a sophisticated understanding of the interconnected nature of risk factors. This study underscores the Geohazard Risk Framework’s utility in enhancing secondary students' comprehension of flood risks and offers insights into effective simulation-based learning strategies for broader geohazard education.</p>","PeriodicalId":50057,"journal":{"name":"Journal of Science Education and Technology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science Education and Technology","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10956-024-10151-7","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

In order to characterize students’ risk assessment explanations based on the Geohazard Risk Framework, which describes four key elements of risk for high school science education, we investigate whether student explanations include the following risk elements: scientific factors, impacts, human influences, and likelihood. This study uses the Geohazard Risk Framework to analyze how students explain their risk assessments and risk mitigation strategies based on experimentation with an interactive computer simulation designed to model flooding risks and hazards. We analyzed students’ explanations using data from 375 students from three suburban, three urban, and three rural schools to learn (1) how secondary students experiment with the simulation and explain flooding risk based on evidence from the simulation and (2) how students carry out and explain model-based testing of a risk mitigation strategy with a simulation. We also analyzed snapshots created by students of the simulation that were used as evidence to support their explanations. Our findings reveal that while the majority of students could identify at least one risk element, those who engaged deeply with the simulation's features demonstrated a sophisticated understanding of the interconnected nature of risk factors. This study underscores the Geohazard Risk Framework’s utility in enhancing secondary students' comprehension of flood risks and offers insights into effective simulation-based learning strategies for broader geohazard education.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算机模拟将地质灾害学习定格为风险评估:洪水案例
地质灾害风险框架描述了高中科学教育中风险的四个关键要素,为了描述学生基于地质灾害风险框架的风险评估解释的特点,我们调查了学生的解释是否包括以下风险要素:科学因素、影响、人为影响和可能性。本研究利用地质灾害风险框架,分析了学生如何解释他们的风险评估和风险缓解策略,这些评估和策略基于对洪水风险和灾害建模的交互式计算机模拟实验。我们利用来自三所郊区学校、三所城市学校和三所农村学校的 375 名学生的数据对学生的解释进行了分析,以了解(1)中学生如何进行模拟实验并根据模拟实验的证据解释洪水风险,以及(2)学生如何利用模拟实验对风险缓解策略进行基于模型的测试并作出解释。我们还分析了学生创建的模拟快照,这些快照被用作支持其解释的证据。我们的研究结果表明,虽然大多数学生都能识别至少一个风险因素,但那些深入参与模拟的学生却对风险因素的相互关联性有着深刻的理解。这项研究强调了地质灾害风险框架在提高中学生对洪水风险理解能力方面的作用,并为更广泛的地质灾害教育提供了有效的模拟学习策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Science Education and Technology
Journal of Science Education and Technology EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
9.40
自引率
4.50%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Journal of Science Education and Technology is an interdisciplinary forum for the publication of original peer-reviewed, contributed and invited research articles of the highest quality that address the intersection of science education and technology with implications for improving and enhancing science education at all levels across the world. Topics covered can be categorized as disciplinary (biology, chemistry, physics, as well as some applications of computer science and engineering, including the processes of learning, teaching and teacher development), technological (hardware, software, deigned and situated environments involving applications characterized as with, through and in), and organizational (legislation, administration, implementation and teacher enhancement). Insofar as technology plays an ever-increasing role in our understanding and development of science disciplines, in the social relationships among people, information and institutions, the journal includes it as a component of science education. The journal provides a stimulating and informative variety of research papers that expand and deepen our theoretical understanding while providing practice and policy based implications in the anticipation that such high-quality work shared among a broad coalition of individuals and groups will facilitate future efforts.
期刊最新文献
Effect of Simulation-Supported Prediction Observation Explanation Activities on Students’ Conception of Learning Physics Related to Solid and Liquid Pressure A Study of Process-Oriented Guided Inquiry Learning (POGIL) in the Blended Synchronous Science Classroom Framing Geohazard Learning as Risk Assessment Using a Computer Simulation: A Case of Flooding When Tutors Simultaneously Instruct Students from the Primary, Middle, and High School Levels in Online One-on-One Tutoring: Investigating the Interaction Dynamics Using AI, ENA, and LSA Methods “Effects of Educational Robotics on Kindergarteners’ Collaboration, Communication, Critical Thinking, and Creativity: A Meta-Analysis”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1