{"title":"Designing a Context-Driven Problem-Solving Method with Metacognitive Scaffolding Experience Intervention for Biology Instruction","authors":"Merga Dinssa Eticha, Adula Bekele Hunde, Tsige Ketema","doi":"10.1007/s10956-024-10107-x","DOIUrl":null,"url":null,"abstract":"<p>Learner-centered instructional practices, such as the metacognitive strategies scaffolding the problem-solving method for Biology instruction, have been shown to promote students’ autonomy and self-direction, significantly enhancing their understanding of scientific concepts. Thus, this study aimed to elucidate the importance and procedures of context analysis in the development of a context-driven problem-solving method with a metacognitive scaffolding instructional approach, which enhances students’ learning effectiveness in Biology. Therefore, the study was conducted in the Biology departments of secondary schools in Shambu Town, Oromia Region, Ethiopia. The study employed mixed-methods research to collect and analyze data, involving 12 teachers and 80 students. The data collection tools used were interviews, observations, and a questionnaire. The study revealed that conducting a context analysis that involves teachers, students, and learning contexts is essential in designing a context-driven problem-solving method with metacognitive scaffolding for Biology instruction, which provides authentic examples, instructional content, and engaging scenarios for teachers and students. As a result, the findings of this study provide a practical instructional strategy that can be applied to studies aimed at designing a context-driven problem-solving method with metacognitive scaffolding with the potential to influence instructional practices.</p>","PeriodicalId":50057,"journal":{"name":"Journal of Science Education and Technology","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science Education and Technology","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10956-024-10107-x","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Learner-centered instructional practices, such as the metacognitive strategies scaffolding the problem-solving method for Biology instruction, have been shown to promote students’ autonomy and self-direction, significantly enhancing their understanding of scientific concepts. Thus, this study aimed to elucidate the importance and procedures of context analysis in the development of a context-driven problem-solving method with a metacognitive scaffolding instructional approach, which enhances students’ learning effectiveness in Biology. Therefore, the study was conducted in the Biology departments of secondary schools in Shambu Town, Oromia Region, Ethiopia. The study employed mixed-methods research to collect and analyze data, involving 12 teachers and 80 students. The data collection tools used were interviews, observations, and a questionnaire. The study revealed that conducting a context analysis that involves teachers, students, and learning contexts is essential in designing a context-driven problem-solving method with metacognitive scaffolding for Biology instruction, which provides authentic examples, instructional content, and engaging scenarios for teachers and students. As a result, the findings of this study provide a practical instructional strategy that can be applied to studies aimed at designing a context-driven problem-solving method with metacognitive scaffolding with the potential to influence instructional practices.
期刊介绍:
Journal of Science Education and Technology is an interdisciplinary forum for the publication of original peer-reviewed, contributed and invited research articles of the highest quality that address the intersection of science education and technology with implications for improving and enhancing science education at all levels across the world. Topics covered can be categorized as disciplinary (biology, chemistry, physics, as well as some applications of computer science and engineering, including the processes of learning, teaching and teacher development), technological (hardware, software, deigned and situated environments involving applications characterized as with, through and in), and organizational (legislation, administration, implementation and teacher enhancement). Insofar as technology plays an ever-increasing role in our understanding and development of science disciplines, in the social relationships among people, information and institutions, the journal includes it as a component of science education. The journal provides a stimulating and informative variety of research papers that expand and deepen our theoretical understanding while providing practice and policy based implications in the anticipation that such high-quality work shared among a broad coalition of individuals and groups will facilitate future efforts.