L1 Estimation: On the Optimality of Linear Estimators

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-08-19 DOI:10.1109/TIT.2024.3440929
Leighton P. Barnes;Alex Dytso;Jingbo Liu;H. Vincent Poor
{"title":"L1 Estimation: On the Optimality of Linear Estimators","authors":"Leighton P. Barnes;Alex Dytso;Jingbo Liu;H. Vincent Poor","doi":"10.1109/TIT.2024.3440929","DOIUrl":null,"url":null,"abstract":"Consider the problem of estimating a random variable X from noisy observations \n<inline-formula> <tex-math>$Y = X+ Z$ </tex-math></inline-formula>\n, where Z is standard normal, under the \n<inline-formula> <tex-math>$L^{1}$ </tex-math></inline-formula>\n fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution \n<inline-formula> <tex-math>$P_{X|Y=y}$ </tex-math></inline-formula>\n is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other \n<inline-formula> <tex-math>$L^{p}$ </tex-math></inline-formula>\n losses and observe the following phenomenon: for \n<inline-formula> <tex-math>$p \\in [{1,2}]$ </tex-math></inline-formula>\n, Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for \n<inline-formula> <tex-math>$p \\in (2,\\infty)$ </tex-math></inline-formula>\n, infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"8026-8039"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639469/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the problem of estimating a random variable X from noisy observations $Y = X+ Z$ , where Z is standard normal, under the $L^{1}$ fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution $P_{X|Y=y}$ is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other $L^{p}$ losses and observe the following phenomenon: for $p \in [{1,2}]$ , Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for $p \in (2,\infty)$ , infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L 1 估算:论线性估计器的最优性
考虑在 $L^{1}$ 保真度准则下,从有噪声的观测值 $Y = X+ Z$ 中估计随机变量 X 的问题,其中 Z 为标准正态分布。众所周知,这种情况下的最优贝叶斯估计器是条件中值。本研究表明,唯一能诱导条件中值线性的 X 先验分布是高斯分布。同时,还提出了其他一些结果。特别是,它证明了如果条件分布 $P_{X|Y=y}$ 对所有 y 都是对称的,那么 X 必须遵循高斯分布。此外,我们还考虑了其他 $L^{p}$ 损失,并观察到以下现象:对于 $p \in [{1,2}]$ 来说,高斯分布是唯一能诱导线性最优贝叶斯估计器的先验分布;而对于 $p \in (2,\infty)$ 来说,X 上有无限多的先验分布能诱导线性。最后,本文还提供了一些扩展,以涵盖导致某些指数族条件分布的噪声模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1