Hyejin Park;Seiyun Shin;Kwang-Sung Jun;Jungseul Ok
{"title":"Transfer Learning in Bandits With Latent Continuity","authors":"Hyejin Park;Seiyun Shin;Kwang-Sung Jun;Jungseul Ok","doi":"10.1109/TIT.2024.3441669","DOIUrl":null,"url":null,"abstract":"A continuity structure of correlations among arms in multi-armed bandit can bring a significant acceleration of exploration and reduction of regret, in particular, when there are many arms. However, it is often latent in practice. To cope with the latent continuity, we consider a transfer learning setting where an agent learns the structural information, parameterized by a Lipschitz constant and an embedding of arms, from a sequence of past tasks and transfers it to a new one. We propose a simple but provably-efficient algorithm to accurately estimate and fully exploit the Lipschitz continuity at the same asymptotic order of lower bound of sample complexity in the previous tasks. The proposed algorithm is applicable to estimate not only a latent Lipschitz constant given an embedding, but also a latent embedding, while the latter requires slightly more sample complexity. To be specific, we analyze the efficiency of the proposed framework in two folds: (i) our regret bound on the new task is close to that of the oracle algorithm with the full knowledge of the Lipschitz continuity under mild assumptions; and (ii) the sample complexity of our estimator matches with the information-theoretic fundamental limit. Our analysis reveals a set of useful insights on transfer learning for latent Lipschitz continuity. From a numerical evaluation based on real-world dataset of rate adaptation in time-varying wireless channel, we demonstrate the theoretical findings and show the superiority of the proposed framework compared to baselines.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7952-7970"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633753/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A continuity structure of correlations among arms in multi-armed bandit can bring a significant acceleration of exploration and reduction of regret, in particular, when there are many arms. However, it is often latent in practice. To cope with the latent continuity, we consider a transfer learning setting where an agent learns the structural information, parameterized by a Lipschitz constant and an embedding of arms, from a sequence of past tasks and transfers it to a new one. We propose a simple but provably-efficient algorithm to accurately estimate and fully exploit the Lipschitz continuity at the same asymptotic order of lower bound of sample complexity in the previous tasks. The proposed algorithm is applicable to estimate not only a latent Lipschitz constant given an embedding, but also a latent embedding, while the latter requires slightly more sample complexity. To be specific, we analyze the efficiency of the proposed framework in two folds: (i) our regret bound on the new task is close to that of the oracle algorithm with the full knowledge of the Lipschitz continuity under mild assumptions; and (ii) the sample complexity of our estimator matches with the information-theoretic fundamental limit. Our analysis reveals a set of useful insights on transfer learning for latent Lipschitz continuity. From a numerical evaluation based on real-world dataset of rate adaptation in time-varying wireless channel, we demonstrate the theoretical findings and show the superiority of the proposed framework compared to baselines.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.