A New Sieving-Style Information-Set Decoding Algorithm

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-09-10 DOI:10.1109/TIT.2024.3457150
Qian Guo;Thomas Johansson;Vu Nguyen
{"title":"A New Sieving-Style Information-Set Decoding Algorithm","authors":"Qian Guo;Thomas Johansson;Vu Nguyen","doi":"10.1109/TIT.2024.3457150","DOIUrl":null,"url":null,"abstract":"The problem of decoding random codes is a fundamental problem for code-based cryptography, including recent code-based candidates in the NIST post-quantum standardization process. In this paper, we present a novel Sieving-style Information-set Decoding algorithm, addressing the task of solving the syndrome decoding problem. Our approach involves maintaining a list of weight-\n<inline-formula> <tex-math>$2p$ </tex-math></inline-formula>\n solution vectors to a partial syndrome decoding problem and then creating new vectors by identifying pairs of vectors that collide in p positions. By gradually increasing the parity-check condition by one and repeating this process iteratively, we find the final solution(s). We show that our novel algorithm performs better than other ISDs in the memory-restricted scenario when applied to McEliece. Notably, in the case of problem instances with very low relative weight, the sieving approach uses significantly less memory compared to other ISD algorithms while being competitive in terms of performance.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"8303-8319"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10672523/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of decoding random codes is a fundamental problem for code-based cryptography, including recent code-based candidates in the NIST post-quantum standardization process. In this paper, we present a novel Sieving-style Information-set Decoding algorithm, addressing the task of solving the syndrome decoding problem. Our approach involves maintaining a list of weight- $2p$ solution vectors to a partial syndrome decoding problem and then creating new vectors by identifying pairs of vectors that collide in p positions. By gradually increasing the parity-check condition by one and repeating this process iteratively, we find the final solution(s). We show that our novel algorithm performs better than other ISDs in the memory-restricted scenario when applied to McEliece. Notably, in the case of problem instances with very low relative weight, the sieving approach uses significantly less memory compared to other ISD algorithms while being competitive in terms of performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的筛分式信息集解码算法
随机码的解码问题是基于码的密码学的一个基本问题,包括最近在 NIST 后量子标准化过程中出现的基于码的候选问题。在本文中,我们提出了一种新颖的筛分式信息集解码算法,以解决综合征解码问题。我们的方法包括维护一个部分综合征解码问题的权重为 2p$ 的解向量列表,然后通过识别在 p 个位置发生碰撞的向量对来创建新向量。通过将奇偶校验条件逐渐增加一个,并反复重复这一过程,我们就能找到最终的解决方案。我们的研究表明,在内存受限的情况下,我们的新算法在 McEliece 中的表现优于其他 ISD。值得注意的是,与其他 ISD 算法相比,在相对权重很低的问题实例中,筛分方法占用的内存要少得多,同时在性能方面也具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1