A. A. Nevzorov, A. A. Burtsev, A. V. Kiselev, V. A. Mikhalevsky, V. V. Ionin, N. N. Eliseev, A. A. Lotin
{"title":"Chaotic computing cell based on nanostructured phase-change materials","authors":"A. A. Nevzorov, A. A. Burtsev, A. V. Kiselev, V. A. Mikhalevsky, V. V. Ionin, N. N. Eliseev, A. A. Lotin","doi":"10.1007/s10825-024-02221-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents and investigates a new architecture of a computational cell based on nanoparticles of the phase-change material Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>. Such a cell is a chaotic array of nanoparticles deposited between closely spaced electrical contacts. The state of such a structure is determined by the resistance of the nanoparticle array, which depends on the phase state of each particle of the material. Simulation results show that the proposed structure has a number of electrical states switching features that cannot be achieved using a thin film architecture. The proposed architecture allows for smoother and more controlled switching of the resistance by electrical pulses. Simulation of the evolution of the cell state using complex control actions showed that the proposed structure can behave as an artificial convolutional neuron with horizontal connections and also as a multi-level memory cell. In addition, the proposed design is technologically simple to achieve and inexpensive to manufacture.</p>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10825-024-02221-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents and investigates a new architecture of a computational cell based on nanoparticles of the phase-change material Ge2Sb2Te5. Such a cell is a chaotic array of nanoparticles deposited between closely spaced electrical contacts. The state of such a structure is determined by the resistance of the nanoparticle array, which depends on the phase state of each particle of the material. Simulation results show that the proposed structure has a number of electrical states switching features that cannot be achieved using a thin film architecture. The proposed architecture allows for smoother and more controlled switching of the resistance by electrical pulses. Simulation of the evolution of the cell state using complex control actions showed that the proposed structure can behave as an artificial convolutional neuron with horizontal connections and also as a multi-level memory cell. In addition, the proposed design is technologically simple to achieve and inexpensive to manufacture.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.