Chaotic computing cell based on nanostructured phase-change materials

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2024-09-13 DOI:10.1007/s10825-024-02221-1
A. A. Nevzorov, A. A. Burtsev, A. V. Kiselev, V. A. Mikhalevsky, V. V. Ionin, N. N. Eliseev, A. A. Lotin
{"title":"Chaotic computing cell based on nanostructured phase-change materials","authors":"A. A. Nevzorov,&nbsp;A. A. Burtsev,&nbsp;A. V. Kiselev,&nbsp;V. A. Mikhalevsky,&nbsp;V. V. Ionin,&nbsp;N. N. Eliseev,&nbsp;A. A. Lotin","doi":"10.1007/s10825-024-02221-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents and investigates a new architecture of a computational cell based on nanoparticles of the phase-change material Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>. Such a cell is a chaotic array of nanoparticles deposited between closely spaced electrical contacts. The state of such a structure is determined by the resistance of the nanoparticle array, which depends on the phase state of each particle of the material. Simulation results show that the proposed structure has a number of electrical states switching features that cannot be achieved using a thin film architecture. The proposed architecture allows for smoother and more controlled switching of the resistance by electrical pulses. Simulation of the evolution of the cell state using complex control actions showed that the proposed structure can behave as an artificial convolutional neuron with horizontal connections and also as a multi-level memory cell. In addition, the proposed design is technologically simple to achieve and inexpensive to manufacture.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1448 - 1454"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02221-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents and investigates a new architecture of a computational cell based on nanoparticles of the phase-change material Ge2Sb2Te5. Such a cell is a chaotic array of nanoparticles deposited between closely spaced electrical contacts. The state of such a structure is determined by the resistance of the nanoparticle array, which depends on the phase state of each particle of the material. Simulation results show that the proposed structure has a number of electrical states switching features that cannot be achieved using a thin film architecture. The proposed architecture allows for smoother and more controlled switching of the resistance by electrical pulses. Simulation of the evolution of the cell state using complex control actions showed that the proposed structure can behave as an artificial convolutional neuron with horizontal connections and also as a multi-level memory cell. In addition, the proposed design is technologically simple to achieve and inexpensive to manufacture.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米结构相变材料的混沌计算单元
本文介绍并研究了一种基于相变材料 Ge2Sb2Te5 纳米粒子的新型计算单元结构。这种电池是沉积在间距紧密的电触点之间的纳米粒子的混沌阵列。这种结构的状态由纳米粒子阵列的电阻决定,而电阻则取决于材料中每个粒子的相态。模拟结果表明,所提出的结构具有一些薄膜结构无法实现的电状态切换功能。所提出的结构可以通过电脉冲实现更平滑、更可控的电阻切换。利用复杂的控制动作模拟电池状态的演变表明,所提出的结构可以作为具有水平连接的人工卷积神经元,也可以作为多级存储单元。此外,所提出的设计在技术上简单易行,制造成本低廉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Study of the ISO-FDTD algorithm for processing higher-order dielectric function in SF-FDTD UTC-PD's optoelectronic mixing principle and optimal working condition Low-profile MIMO antenna for sub-6G smartphone applications with minimal footprint: an SVM-guided approach Impact of in-plane electric field on the optical properties of CO2 adsorbed 2D MoSe2 monolayer: application as a photodetector Empirical mathematical model based on optimized parameter extraction from captured electrohydrodynamic inkjet memristor device with LTspice model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1