Synergistic effect of total ionizing dose and single event gate rupture in MOSFET with Si3N4–SiO2 stacked gate

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2024-09-06 DOI:10.1007/s10825-024-02227-9
Rongxing Cao, Hanxun Liu, Kejia Wang, Dike Hu, Yiyuan Wang, Xianghua Zeng, Yuxiong Xue
{"title":"Synergistic effect of total ionizing dose and single event gate rupture in MOSFET with Si3N4–SiO2 stacked gate","authors":"Rongxing Cao,&nbsp;Hanxun Liu,&nbsp;Kejia Wang,&nbsp;Dike Hu,&nbsp;Yiyuan Wang,&nbsp;Xianghua Zeng,&nbsp;Yuxiong Xue","doi":"10.1007/s10825-024-02227-9","DOIUrl":null,"url":null,"abstract":"<div><p>The synergistic effect of total ionizing dose on single event gate rupture (SEGR) was simulated in the vertical double diffusion metal oxide semiconductor device with SiO<sub>2</sub>–Si<sub>3</sub>N<sub>4</sub> stacked gate layer. In comparison to the device with a single SiO<sub>2</sub> gate layer, the synergistic effect was revealed to be suppressed in the device with SiO<sub>2</sub>–Si<sub>3</sub>N<sub>4</sub> stacked layer. The mechanism is that the oxide layer is a sensitive area of the SEGR effect. Compared with the single SiO<sub>2</sub> layer, the superposition of the additional electric field formed by the trapped holes in the sensitive area of the stacked layer leads to a decrease in the sensitivity of the synergistic effect, which is more obvious with increasing the volume of the Si<sub>3</sub>N<sub>4</sub> layer.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1298 - 1305"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02227-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The synergistic effect of total ionizing dose on single event gate rupture (SEGR) was simulated in the vertical double diffusion metal oxide semiconductor device with SiO2–Si3N4 stacked gate layer. In comparison to the device with a single SiO2 gate layer, the synergistic effect was revealed to be suppressed in the device with SiO2–Si3N4 stacked layer. The mechanism is that the oxide layer is a sensitive area of the SEGR effect. Compared with the single SiO2 layer, the superposition of the additional electric field formed by the trapped holes in the sensitive area of the stacked layer leads to a decrease in the sensitivity of the synergistic effect, which is more obvious with increasing the volume of the Si3N4 layer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带 Si3N4-SiO2 叠层栅极的 MOSFET 中总电离剂量和单次栅极破裂的协同效应
在具有 SiO2-Si3N4 堆叠栅极层的垂直双扩散金属氧化物半导体器件中模拟了总电离剂量对单次栅极破裂(SEGR)的协同效应。与单一二氧化硅栅极层的器件相比,SiO2-Si3N4 叠层器件的协同效应受到了抑制。其机理是氧化层是 SEGR 效应的敏感区域。与单 SiO2 层相比,叠层敏感区域中的陷落空穴形成的附加电场的叠加导致协同效应的灵敏度降低,这一点随着 Si3N4 层体积的增大而更加明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Design and modeling of multi-color absorber based on periodic van der Waals heterostructures including TMDCs Engineering the structural, electronic, and optical properties of the novel monolayer photoelectric semiconductor C2/m-SnX (X = P, as) via strain: a first-principles study Design and analysis of novel D–π–A configuration dyes for dye-sensitized solar cells: a density functional theory study Modelling and simulation of TSV considering void and leakage defects Design and FEM analysis of split electrode SAW sensor for volatile organic compound gases based on CNT/MoS2 composite for biomarker applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1