Global convergence of a cautious projection BFGS algorithm for nonconvex problems without gradient Lipschitz continuity

IF 1.2 4区 数学 Q1 MATHEMATICS Acta Mathematica Scientia Pub Date : 2024-08-27 DOI:10.1007/s10473-024-0506-3
Gonglin Yuan, Xiong Zhao, Jiajia Yu
{"title":"Global convergence of a cautious projection BFGS algorithm for nonconvex problems without gradient Lipschitz continuity","authors":"Gonglin Yuan, Xiong Zhao, Jiajia Yu","doi":"10.1007/s10473-024-0506-3","DOIUrl":null,"url":null,"abstract":"<p>A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems. The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption, which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method. Under some additional conditions, the method presented has a superlinear convergence rate, which can be regarded as an extension and supplement of BFGS-type methods with the projection technique. Finally, the effectiveness and application prospects of the proposed method are verified by numerical experiments.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0506-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems. The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption, which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method. Under some additional conditions, the method presented has a superlinear convergence rate, which can be regarded as an extension and supplement of BFGS-type methods with the projection technique. Finally, the effectiveness and application prospects of the proposed method are verified by numerical experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对无梯度 Lipschitz 连续性非凸问题的谨慎投影 BFGS 算法的全局收敛性
本文提出了一种用于求解非凸无约束优化问题的谨慎投影 BFGS 方法。该方法无需梯度 Lipschitz 连续性假设即可证明其全局收敛性以及更强的一般收敛结果,比现有的修正 BFGS 方法和传统 BFGS 方法更符合实际问题。在一些附加条件下,所提出的方法具有超线性收敛率,可以看作是对采用投影技术的 BFGS 类方法的扩展和补充。最后,通过数值实验验证了所提方法的有效性和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
期刊最新文献
Lévy area analysis and parameter estimation for fOU processes via non-geometric rough path theory Heat kernel on Ricci shrinkers (II) Variational analysis for the maximal time function in normed spaces Toeplitz operators between weighted Bergman spaces over the half-plane Global unique solutions for the incompressible MHD equations with variable density and electrical conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1