Optimization of synthesis and characterization of novel sodium alginate/montmorillonite/zinc oxide bionanocomposite as an antibacterial agent against Streptococcus mutans
Mohammad Moslem Imani, Pourya Gorji, Mohammad Salmani Mobarakeh, Mohsen Safaei
{"title":"Optimization of synthesis and characterization of novel sodium alginate/montmorillonite/zinc oxide bionanocomposite as an antibacterial agent against Streptococcus mutans","authors":"Mohammad Moslem Imani, Pourya Gorji, Mohammad Salmani Mobarakeh, Mohsen Safaei","doi":"10.1016/j.nanoso.2024.101318","DOIUrl":null,"url":null,"abstract":"Due to the escalating bacterial resistance, the objective of the current investigation was to discover the most favorable condition for the fabrication of a novel bionanocomposite consisting of sodium alginate, montmorillonite, and ZnO, possessing the greatest degree of antibacterial efficacy. To determine the optimal synthesis conditions for nanocomposite with the most favorable antimicrobial activity, a total of nine experiments were devised via the Taguchi methodology. The studied nanocomposites were produced using the in situ method. The antibacterial efficacy of the synthesized nanocomposites was assessed against through the utilization of the colony-forming unit methodology. The nanocomposites synthesized, consisting of 60 mg/mL alginate, 0.6 mg/mL montmorillonite, and 6 mg/mL ZnO, exhibited the most potent antibacterial activity. The greatest effect on bacterial viability was related to the ZnO factor. The synthesis of alginate/MMT/ZnO nanocomposites with desirable conditions was confirmed using various analyses. This study showed that alginate/MMT/ZnO nanocomposite has high performance under optimal conditions, and applying optimal levels of components improves the antibacterial properties of the synthesized nanocomposite.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"12 1","pages":""},"PeriodicalIF":5.4500,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.nanoso.2024.101318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the escalating bacterial resistance, the objective of the current investigation was to discover the most favorable condition for the fabrication of a novel bionanocomposite consisting of sodium alginate, montmorillonite, and ZnO, possessing the greatest degree of antibacterial efficacy. To determine the optimal synthesis conditions for nanocomposite with the most favorable antimicrobial activity, a total of nine experiments were devised via the Taguchi methodology. The studied nanocomposites were produced using the in situ method. The antibacterial efficacy of the synthesized nanocomposites was assessed against through the utilization of the colony-forming unit methodology. The nanocomposites synthesized, consisting of 60 mg/mL alginate, 0.6 mg/mL montmorillonite, and 6 mg/mL ZnO, exhibited the most potent antibacterial activity. The greatest effect on bacterial viability was related to the ZnO factor. The synthesis of alginate/MMT/ZnO nanocomposites with desirable conditions was confirmed using various analyses. This study showed that alginate/MMT/ZnO nanocomposite has high performance under optimal conditions, and applying optimal levels of components improves the antibacterial properties of the synthesized nanocomposite.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .