Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis

0 CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2024-08-28 DOI:10.1038/s44160-024-00621-6
Tae-Ung Wi, Yongchao Xie, Zachary H. Levell, Danyi Feng, Jung Yoon ‘Timothy’ Kim, Peng Zhu, Ahmad Elgazzar, Tae Hwa Jeon, Mohsen Shakouri, Shaoyun Hao, Zhiwei Fang, Chang Qiu, Hyun-Wook Lee, Andrea Hicks, Yuanyue Liu, Chong Liu, Haotian Wang
{"title":"Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis","authors":"Tae-Ung Wi, Yongchao Xie, Zachary H. Levell, Danyi Feng, Jung Yoon ‘Timothy’ Kim, Peng Zhu, Ahmad Elgazzar, Tae Hwa Jeon, Mohsen Shakouri, Shaoyun Hao, Zhiwei Fang, Chang Qiu, Hyun-Wook Lee, Andrea Hicks, Yuanyue Liu, Chong Liu, Haotian Wang","doi":"10.1038/s44160-024-00621-6","DOIUrl":null,"url":null,"abstract":"It is challenging to obtain high-value hydrocarbons that are longer than C3 via electrochemical CO2/CO reduction. Integrating electrochemical CO2/CO electrolysers with a downstream bioreactor is one solution for obtaining high-value long-chain products, but the electrolytes in these two systems are mismatched, preventing smooth integration. Here we demonstrate a porous solid electrolyte reactor that produces highly selective and electrolyte-free acetate and couple it with a biosynthesis system for generating C4+ polyhydroxybutyrate bioplastic. A finely tuned electrolyte containing biocompatible salt medium with acetate can be directly injected into the downstream bioreactor without any separation or salt-mixing processes. In the optimized coupled platform, Ralstonia eutropha bacteria can grow with acetate generated from the CO electrocatalytic reduction reactor, and produce bioplastic as the final value-added product. Integrating electrochemical CO electrolysers with a bioreactor can yield high-value long-chain carbon products, but the electrolytes for the two systems are mismatched. Now, a porous solid electrolyte reactor, which can produce acetate directly in bioelectrolyte, is demonstrated. Direct integration with a bioreactor produces bioplastic from CO via the acetate intermediate.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00621-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is challenging to obtain high-value hydrocarbons that are longer than C3 via electrochemical CO2/CO reduction. Integrating electrochemical CO2/CO electrolysers with a downstream bioreactor is one solution for obtaining high-value long-chain products, but the electrolytes in these two systems are mismatched, preventing smooth integration. Here we demonstrate a porous solid electrolyte reactor that produces highly selective and electrolyte-free acetate and couple it with a biosynthesis system for generating C4+ polyhydroxybutyrate bioplastic. A finely tuned electrolyte containing biocompatible salt medium with acetate can be directly injected into the downstream bioreactor without any separation or salt-mixing processes. In the optimized coupled platform, Ralstonia eutropha bacteria can grow with acetate generated from the CO electrocatalytic reduction reactor, and produce bioplastic as the final value-added product. Integrating electrochemical CO electrolysers with a bioreactor can yield high-value long-chain carbon products, but the electrolytes for the two systems are mismatched. Now, a porous solid electrolyte reactor, which can produce acetate directly in bioelectrolyte, is demonstrated. Direct integration with a bioreactor produces bioplastic from CO via the acetate intermediate.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过集成电化学还原和生物合成将一氧化碳升级为生物塑料
通过电化学 CO2/CO 还原获得长于 C3 的高价值碳氢化合物具有挑战性。将电化学 CO2/CO 电解槽与下游生物反应器整合是获得高价值长链产品的一种解决方案,但这两个系统中的电解质不匹配,阻碍了整合的顺利进行。在这里,我们展示了一种多孔固体电解质反应器,它能产生高选择性和无电解质的醋酸盐,并将其与生物合成系统结合起来,生成 C4+ 聚羟基丁酸生物塑料。含有醋酸盐的生物兼容盐介质可直接注入下游生物反应器,而无需任何分离或混盐过程。在优化的耦合平台中,Ralstonia eutropha 细菌可以利用 CO 电催化还原反应器产生的醋酸生长,并生产出生物塑料作为最终的增值产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
From furans to pyrroles Predicting enantioselectivity for diverse substrates Electrochemical etherification and amination Polyhedral expansion of closo-hexaboranes Reproducibility in automated chemistry laboratories using computer science abstractions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1