Suzuki–Miyaura coupling of arylthianthrenium tetrafluoroborate salts under acidic conditions

IF 20 0 CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2024-08-26 DOI:10.1038/s44160-024-00631-4
Li Zhang, Yuanhao Xie, Zibo Bai, Tobias Ritter
{"title":"Suzuki–Miyaura coupling of arylthianthrenium tetrafluoroborate salts under acidic conditions","authors":"Li Zhang, Yuanhao Xie, Zibo Bai, Tobias Ritter","doi":"10.1038/s44160-024-00631-4","DOIUrl":null,"url":null,"abstract":"The palladium-catalysed Suzuki–Miyaura cross-coupling (SMC) is currently the most commonly used reaction to construct carbon–carbon bonds in the pharmaceutical industry. Typical methods require the use of a base, which limits the substrate scope. To mitigate this shortcoming, substantial effort has been made to develop base-tolerant organoboron reagents, efficient catalysts and reaction conditions that do not require external bases. Still, many boronic acids cannot be used or must be independently protected, and many Lewis-basic functional groups poison the catalyst. Here we report a conceptually different SMC reaction that can proceed even under acidic conditions, with a broad substrate scope. Key to this advance is the formation of an acid-stable, palladium-based ion pair between the reaction partners that does not require base for subsequent productive transmetallation. Boronic acids that cannot be used directly in other SMC reactions, such as 2-pyridylboronic acid and boronic acids with strong Lewis bases, can now be used successfully. Suzuki–Miyaura cross-coupling between (hetero)aryl (pseudo)halides and base-sensitive and Lewis-basic (hetero)arylboronic acids is challenging, owing to potential side reactions and catalyst poisoning. Now, the Suzuki–Miyaura cross-coupling of arylthianthrenium salts with (hetero)arylboronic acids, under acidic conditions, is reported, enabling the efficient coupling of base-sensitive and Lewis-basic (hetero)arylboronic acids.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 12","pages":"1490-1497"},"PeriodicalIF":20.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44160-024-00631-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00631-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The palladium-catalysed Suzuki–Miyaura cross-coupling (SMC) is currently the most commonly used reaction to construct carbon–carbon bonds in the pharmaceutical industry. Typical methods require the use of a base, which limits the substrate scope. To mitigate this shortcoming, substantial effort has been made to develop base-tolerant organoboron reagents, efficient catalysts and reaction conditions that do not require external bases. Still, many boronic acids cannot be used or must be independently protected, and many Lewis-basic functional groups poison the catalyst. Here we report a conceptually different SMC reaction that can proceed even under acidic conditions, with a broad substrate scope. Key to this advance is the formation of an acid-stable, palladium-based ion pair between the reaction partners that does not require base for subsequent productive transmetallation. Boronic acids that cannot be used directly in other SMC reactions, such as 2-pyridylboronic acid and boronic acids with strong Lewis bases, can now be used successfully. Suzuki–Miyaura cross-coupling between (hetero)aryl (pseudo)halides and base-sensitive and Lewis-basic (hetero)arylboronic acids is challenging, owing to potential side reactions and catalyst poisoning. Now, the Suzuki–Miyaura cross-coupling of arylthianthrenium salts with (hetero)arylboronic acids, under acidic conditions, is reported, enabling the efficient coupling of base-sensitive and Lewis-basic (hetero)arylboronic acids.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芳基噻吩四氟硼酸盐在酸性条件下的 Suzukii-Miyaura 偶联反应
钯催化的Suzuki-Miyaura交叉偶联(SMC)是目前制药业中最常用的构建碳-碳键的反应。典型的方法需要使用碱,这就限制了底物的范围。为了缓解这一缺陷,人们已经做出巨大努力,开发耐碱有机硼试剂、高效催化剂和不需要外加碱的反应条件。但是,许多硼酸仍然不能使用或必须独立保护,而且许多路易斯碱性官能团会毒害催化剂。在此,我们报告了一种概念不同的 SMC 反应,该反应即使在酸性条件下也能进行,并具有广泛的底物范围。这一进展的关键在于反应物之间形成了一种酸性稳定的钯基离子对,这种离子对在随后的生产性反金属化过程中不需要碱。在其他 SMC 反应中无法直接使用的硼酸,如 2-吡啶基硼酸和带有强路易斯碱的硼酸,现在都可以成功使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
Catalytic asymmetric hydroalkylation of 1,1-dialkyl-substituted alkenes with unactivated alkyl electrophiles Synthesis covered in 2025 Triphasic synthesis of MXenes with uniform and controlled halogen terminations Customized cycloparaphenylene skeletons prepared via the intramolecular coupling of extended biphen[n]arenes Synthesis of wafer-scale uniaxially oriented tellurium films via molecular engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1